
Dominic White - MSc - Patch Management.pdf

Limiting Vulnerability Exposure through effective
Patch Management: threat mitigation through

vulnerability remediation

Submitted in fulfilment

of the requirements of the degree

MASTER OF SCIENCE
in the Department of Computer Science

of Rhodes University

Dominic Stjohn Dolin White
<project@singe.rucus.net>

January 2006

Abstract

This document aims to provide a complete discussion on vulnerability and patch management.
The first chapters look at the trends relating to vulnerabilities, exploits, attacks and patches.
These trends describe the drivers of patch and vulnerability management and situate the dis-
cussion in the current security climate. The following chapters then aim to present both policy
and technical solutions to the problem. The policies described lay out a comprehensive set of
steps that can be followed by any organisation to implement their own patch management policy,
including practical advice on integration with other policies, managing risk, identifying vulner-
ability, strategies for reducing downtime and generating metrics to measure progress. Having
covered the steps that can be taken by users, a strategy describing how best a vendor should
implement a related patch release policy is provided. An argument is made that current monthly
patch release schedules are inadequate to allow users to most effectively and timeously mitigate
vulnerabilities. The final chapters discuss the technical aspect of automating parts of the policies
described. In particular the concept of ’defense in depth’ is used to discuss additional strategies
for ’buying time’ during the patch process. The document then goes on to conclude that in the
face of increasing malicious activity and more complex patching, solid frameworks such as those
provided in this document are required to ensure an organisation can fully manage the patching
process. However, more research is required to fully understand vulnerabilities and exploits. In
particular more attention must be paid to threats, as little work as been done to fully understand
threat-agent capabilities and activities from a day to day basis.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Patch Management . 3

1.2.1 Definitions . 4

1.3 The Need for Patch Management . 6

1.4 Objectives . 7

1.5 Methodology . 8

1.6 Conclusion . 10

2 Vulnerability and Patch Management 11

2.1 Introduction . 11

2.2 The Vulnerability Life-Cycle . 12

2.3 Vulnerabilities, Malware and Exploitation Trends 16

2.3.1 Increasing number of vulnerabilities . 16

2.3.2 Increasing number of attacks . 18

2.3.3 Exploit window shrinking . 21

2

CONTENTS 3

2.4 Problems with Patches . 22

2.4.1 Unpredictable Patches . 23

2.4.2 Too Many Patches . 24

2.4.3 Window to Patch is Shrinking . 25

2.4.4 Complex Patches . 26

2.4.5 Hard to obtain patches . 26

2.4.6 Problem Patch Examples . 28

2.4.6.1 SQL Slammer/Sapphire Worm 28

2.4.6.2 GDI+ JPEG Vulnerability . 30

2.5 Conclusion . 31

3 Policy Solutions 33

3.1 Introduction . 33

3.2 Patch Management Policy . 34

3.2.1 Patch and Vulnerability Group . 35

3.2.2 Security, Stability, Functionality Patches and Workarounds 36

3.2.3 Policy . 38

3.2.3.1 Information Gathering . 40

3.2.3.2 Risk Assessment . 47

3.2.3.3 Scheduling and Patching Strategy 53

3.2.3.4 Testing . 57

3.2.3.5 Planning & Change Management 61

CONTENTS 4

3.2.3.6 Deployment, Installation and Remediation 64

3.2.3.7 Verification & Reporting . 65

3.2.3.8 Maintenance . 71

3.2.3.9 Summary . 72

3.3 Conclusion . 73

4 Vendor Patch Release Policy 75

4.1 Introduction . 75

4.2 State of the Art . 76

4.3 An analysis of patch schedules . 78

4.3.1 The Disclosure Debate . 79

4.3.1.1 Delayed Disclosure . 80

4.3.1.2 Instantaneous Disclosure . 81

4.3.2 Patch Schedules and Delayed Disclosure 82

4.3.3 Patch Schedules and Instantaneous Disclosure 83

4.3.3.1 Quality . 84

4.3.3.2 Planned Deployment . 87

4.3.3.3 Examples . 88

4.3.4 Conclusion . 90

4.4 Advice for implementing a Patch Release Schedule 90

4.4.1 Dual Schedules and Separation Criteria 91

4.4.2 Predictable Patch Release Schedule . 92

CONTENTS 5

4.4.3 Critical Patch Release . 94

4.4.4 Encouraging Delayed Disclosure . 96

4.5 Conclusion . 97

5 Practical Solutions 98

5.1 Introduction . 98

5.2 Patch Management Software . 98

5.2.1 Functionality and Classification of Patching Tools 99

5.2.1.1 Notification . 103

5.2.1.2 Inventory Management . 104

5.2.1.3 Vulnerability Scanner . 105

5.2.1.4 Patch Testing . 106

5.2.1.5 Patch Packaging . 107

5.2.1.6 Patch Distribution . 111

5.2.1.7 Reporting . 111

5.2.1.8 Summary . 112

5.2.2 Architecture . 112

5.2.2.1 Agentless . 112

5.2.2.2 Agent . 114

5.2.3 Available Tools . 115

5.2.3.1 Evolution . 115

5.2.3.2 Examples . 117

CONTENTS 6

5.3 Defence in-depth . 119

5.3.1 Firewalls and Anti-Virus . 119

5.3.2 Intrusion Detection/Prevention Systems 120

5.3.2.1 Virtual Patching . 121

5.3.3 Other Hardening . 122

5.3.4 Software Selection . 122

5.4 Conclusion . 124

6 Conclusion 126

6.1 Introduction . 126

6.2 Objectives . 126

6.2.1 Summary . 128

6.3 Problems and Solutions . 129

6.4 Future Work . 129

6.4.1 Threat Management . 129

6.4.2 Vulnerability Detail and Trend Tracking 130

6.4.3 Optimal Time to Patch for Large Vendors 130

6.4.4 Patch Standards . 131

6.5 Final Word . 131

Bibliography 133

References 133

CONTENTS 7

A Time-line of Notable Worms and Viruses 157

A.1 Introduction . 157

A.2 Time-line . 157

A.2.1 2006 . 157

A.2.2 2005 . 157

A.2.3 2004 . 158

A.2.4 2003 . 158

A.2.5 2001 . 159

A.2.6 1999 . 159

A.2.7 1998 . 159

A.2.8 1995 . 160

A.2.9 1992 . 160

A.2.10 1989 . 160

A.2.11 1988 . 160

A.2.12 1987 . 160

A.2.13 1982 . 161

B Analysis of WSUS 162

B.1 Introduction . 162

B.2 What’s New . 163

B.3 Installation . 164

B.3.1 Topology . 164

CONTENTS 8

B.3.1.1 Default . 164

B.3.1.2 Grouping . 164

B.3.1.3 Chaining . 166

B.3.1.4 Client Download . 166

B.3.2 Requirements . 167

B.3.3 Server . 168

B.3.4 Client . 168

B.4 Configuration . 169

B.4.1 Server . 169

B.4.2 Client Side . 173

B.5 Patching . 176

B.5.1 Synchronisation . 176

B.5.2 Approval . 176

B.5.3 Detection . 178

B.5.4 Distribution . 178

B.5.5 Installation . 179

B.5.6 Verification . 179

B.6 Reporting . 179

B.7 Packet Capture . 180

B.7.1 Steps Performed . 180

B.7.2 Resulting Network Traffic . 181

CONTENTS 9

B.7.3 Analysis . 186

B.7.4 Packet Capture Summary . 187

B.7.4.1 Interface . 187

B.7.4.2 Security . 188

B.8 Resources . 188

B.9 Conclusion . 188

List of Figures

2.1 Theorised Vulnerability Life-Cycle [1] . 14

2.2 Generalised Model of Empirical Findings . 16

3.1 Hypothetical graph of the risk of compromise and patching [2]. 55

3.2 Patch application and its impact on Availability [3] 56

3.3 Diagram of the proposed Patch Management policy 73

4.1 Delayed Disclosure and its effects on vulnerable machines and exploitation
Source: Modified from Rescorla [4] . 81

4.2 Instantaneous Disclosure and its effects on vulnerable machines and exploitation
Source: Modified from Rescorla [4] . 82

5.1 Graph of the effectiveness of binary patch tools 109

5.2 Graph of the number of vulnerabilities in different Linux kernel versions per
year.
Source: CVE [5] . 124

B.1 Default Topology . 165

B.2 Grouped Topology . 165

B.3 Chained Topology . 166

1

LIST OF FIGURES 2

B.4 Client Download Topology . 167

B.5 WSUS Administrative Interface . 168

B.6 WSUS Configuration . 169

B.7 Automatic Approval . 170

B.8 Product Update Selection . 171

B.9 Client-Side Computer Grouping . 172

B.10 New BITS Options . 174

B.11 Remove Access to Windows Update . 175

B.12 Update Approval . 177

B.13 Patch Status Detection . 178

B.14 WSUS reports . 180

B.15 Report by Computer . 181

B.16 Report by Update . 182

List of Tables

3.1 Types of Patch and Remediation Summary . 38

3.2 Patch Management Policy Summary . 39

3.3 Factors influencing priority rating . 42

3.4 Patch and Vulnerability Detail Summary . 44

3.5 Exploit and Threat Detail Summary . 47

3.6 Impact Level [6] . 52

3.7 Likelihood [6] . 53

3.8 Risk Level [6] . 53

4.1 Half-Life of Vulnerabilities [7, 8, 9] . 78

4.2 (Corrected) Microsoft Time to Patch Summary 89

5.1 Table comparing file sizes of different methods of distributing the same file. . . . 109

5.2 Patch Management Automation . 113

5.3 Comparison of Patch Management Tool Functionality 118

3

LIST OF TABLES 4

5.4 Table depicting vulnerabilities in the different Linux kernel versions over time
Source: CVE [5]
Note: The total columns do not add up correctly as some vulnerabilities affect multiple kernel

versions or non-standard kernel patches. For example in 2004 there were 13 vulnerabilities

which overlapped and in 2000 one vulnerability was in the trustees kernel patch and in 1999 one

vulnerability was in the 2.0 kernel version which isn’t included. These are included in the total

to provide an idea of the general reporting trends in the linux kernel. 123

Acknowledgements

For-most thanks to the Father, Son and Holy Spirit.

umuntu ngumuntu ngabantu - a person is a person through other people

Thanks to Barry Irwin, my supervisor, for his support. Thank you to my mother, father and
brother for their care. Thank you to my friends who provided a sounding board; in particular
Jason van Niekerk, Chantelle Morkel, (the KiDDiEs) Jonathan Hitchcock, Yusuf Motara, Ingrid
Brandt, Bradley Whittington, Russell Cloran, and David Mackie. Thank you to members of the
international security community, particularly Adam Shostack, Susan Bradley and the volunteers
at the Internet Storm Center for their help. Particular thanks to Daniela Faris for her conditionless
love; Bradley Whittington for lending me a house and Chantelle Morkel for the food and laughter.

A few people gave up their valuable time to help proof read this; thank you Johnathan Hitch-
cock, Thamsanqua Moyo, Fred Otten and Barry Irwin. Finally, thank you to Rhodes University
Computer Science department, Professor Peter Clayton, John Gillam, the NRF and DAAD for
providing me with the opportunity and resources to study.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.0 South
Africa License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.0/za/ or send a
letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Chapter 1

Introduction

1.1 Background

“At the moment computer security is rather basic and mostly reactive. Systems

fail absolutely rather than degrade. We are still in a world where an attack like the

slammer worm combined with a PC BIOS eraser or disk locking tool could wipe

out half the PCs exposed to the Internet in a few hours. In a sense we are fortunate

that most attackers want to control and use systems they attack rather than destroy

them.”

– Alan Cox, Linux Kernel Developer in an Interview with Edd Dumbill [10]

Alan Cox’s quotation provides a concise introduction into the current state of information se-
curity, the field in which this research is conducted. The tone of the quotation sets the tone of
the field: there are a significant number of evolving threats, and without effective research and
defences we are in danger of being overwhelmed. He first refers to the binary nature of system
failures, an all-or-nothing world in which nuanced risk mitigation strategies that allow for the
reality of some intrusion without resulting in a complete system breach are often unavailable.
He references one of the most effective worms we have seen in recent times, which managed to
compromise 90% of its hosts within 10 minutes. It was the first example of a theorised Warhol
worm, able to disable every host on the internet in 15 minutes, a reference to Andy Warhol when
he said “everyone will have 15 minutes of fame” [11]. Cox points out the unsophisticated nature
of the Slammer worm, it contained no destructive payload, in fact, all of its damage was caused

1

CHAPTER 1. INTRODUCTION 2

by the excessive load it put on infrastructure in searching for and infecting hosts. Slammer’s
record has since been topped by more dangerous worms such as the Witty worm. Over the last
few years some of the least destructive worms have resulted in a range of Hollywood-style con-
sequences: ATMs infected with malicious code [12], planes grounded [13], waste-water plants
disgorging sludge [14] and a nuclear power plant compromised [15].

Cox’s next reference is to the changing nature of malicious entities on the Internet. Where
previously malicious attackers were hypothesised to be curious geeks with questionable ethics,
increasingly threats appear to be coming from criminal entities with a profit motive [16], who
seem to be collaborating to use multiple simultaneous attack vectors [16]. Two neologisms
have been added as sub-types of malware1; spyware and adware, a reference to the increasing
financial motivation of malicious software that seeks to steal private information for a profit
[17]. This malicious software is employing sophisticated attack and control techniques often
utilising similar techniques to those employed by anti-virus vendors and infrastructure teams.
For example, the hacker defender root-kit uses the same signature-based approach virus scanners
use, to detect anti-virus software and disable it [18]. Cox’s reference to controlling and using
systems encompasses many examples, including wide scale identity theft [19], massive botnet
farms, wide-spread phishing scams and an out of control SPAM problem. Examples of extortion
and ensuing DDoS attacks at non-payment abound [20, 21].

As market places and businesses start building their services on top of the Internet, it is becom-
ing increasingly attractive for criminals to follow suit [22]. This has resulted in an increase in
malicious software (malware) and successful intrusions, many of which pass undetected. Recent
activity has indicated a shift from large scale mass-mailer and worm attacks to rapidly evolving,
targeted malware attacks, in an effort to make detection harder [16]. As more systems become
networked and private networks are attached to public ones the attack surface of an organisation
is increased, allowing an attacker to take advantages of both complex systems and complex in-
teractions between multiple systems. In response there has been an increase in security activity
to counter such threats. Much of the work is dealing with problems that have existed for a long
time, but have been exacerbated by the increase in malicious activity. In particular the automated
exploitation and propagation of malware in the form of worms has meant that an administrator
has to deal with every vulnerability, and deal with it quickly.

Exploiting weaknesses and vulnerabilities requires an attacker to think outside of what is con-
sidered normal operating procedures, to discover what unusual behaviour will result in a higher

1A shorthand for malicious software.

CHAPTER 1. INTRODUCTION 3

level of access to the system. This attacker needs to find only one hole, but often many exist.
Conversely, a security professional needs to apply the same level of creative thinking into de-
fending against every possible hole. This tips the scales in the attacker’s favour. However, there
is an ongoing and concerted effort to provide workable defence strategies by the “white hat”2

security community. If organisations develop and implement rigorous security policies many of
the threats can be mitigated to a manageable level.

This work is part of such an effort and hopes to provide some guidance and understanding to the
field of patch management.

1.2 Patch Management

This work’s specific field of study is patch management, an intersection of two related fields,
namely, vulnerability management and change management. A patch is used to mitigate a vul-
nerability permanently, and as such is a mandatory part of any vulnerability management pro-
gram. When many patches are regularly installed, change is regularly introduced into systems
which could potentially cause failures, and these changes need to be managed. This describes
the patch paradox, where, without a patch an asset is vulnerable to attack, and with a patch the
asset is vulnerable to failure.

While patch management has recently become a regular topic of discussion, the first recorded
mention of the phrase ’patch management’ on USENET is in 1992 [23, 24, 25], although the
concept of patching was introduced before then. Larry Wall (of Perl fame) wrote the Unix patch

utility in 1985 [26]. In 1997 a project to create a platform non-specific automated patching solu-
tion was funded by the US Department of Energy [11] while at the same time Eugene Spafford’s
COAST Laboratory Secure Patch Distribution Group investigated how best to distribute patches
[27]. This may leave an observer wondering why patch management is receiving so much recent
attention. The common perception is that the onslaught of several effective worms - Code Red,
Nimda, Slammer, Blaster and Sasser - for which patches were available (often months or weeks
in advance) highlighted the need for effective patch management. However, these worms were
nothing new - the Morris worm [28] had done the same thing in 1988. The growth in the number
of inter-networked users and devices on the Internet and their increasingly large bandwidth, the

2A “white hat” security professional is one dedicated to the protection of assets, as opposed to malicious “black
hats”. The terms are a reference to the colour of the hats traditionally worn by good and bad guys in cowboy movies.

CHAPTER 1. INTRODUCTION 4

increase in the number of software vulnerabilities, the increase in sophistication, number and
speed of malicious attacks, and the difficulties in deploying patches have all contributed to a
re-invigoration of the discussion.

1.2.1 Definitions

To aid further discussion, some definitions need to be provided. This is particularly important
given the wide range of definitions for terms in the relatively young field of information security.
Specifically, there is some argument over the use of the term ’threat’. Bejtlich claims that security
professionals are “mixing and matching the terms threat and vulnerability and risk to suit their
fancy. [29]” It makes sense to side with Bejtlich on this point, primarily because few seem to
disagree with him on the subject. In addition there are several high quality resources that agree
with his definitions, most notably the US military Information Assurance division [30] and the
Office of Cyber Security & Critical Infrastructure Coordination [31], the National Institute of
Standards (NIST) Special Document 800-30 [32] and Microsoft’s Security Risk Management
Guide [33]. Lastly, Bejtlich’s use of the term allows for a more granular use of the others’ terms,
particularly ’exploit’. It is unfortunate that documents such as ISO/IEC 17799 do not have a
formal definition of such terms, while other high quality sources such as the National Institute of
Standards Special Publication 800-40 on patch management actually define the term incorrectly,
using threat as a synonym for malware [34]. Thus, the definitions for terms used in this document
are:

Vulnerability

A vulnerability is a weakness in an asset which could be exploited by a threat. In the context
of this discussion the asset is usually an electronic system. Other fields may define the asset
differently, for example in the field of social engineering the asset usually refers to a person. A
vulnerability usually refers to “flaws or misconfigurations that cause a weakness in the security
of a system” [32].

Threat

IEC/ISO 13335-1 [35] defines a threat generally as “a potential cause of an unwanted impact to
a system or organisation.“ More specifically a threat is an entity with both the capability and the
intention to exploit a vulnerability in an asset. Some sources define a threat source as the actual

CHAPTER 1. INTRODUCTION 5

entity and the threat as “capabilities, intentions, and attack methods of adversaries to exploit,
damage, or alter information or an information system .” [30] This document finds little use for
the distinction and groups both this definition of threat and threat-source under the same term.

Exploit

An exploit is either; a process or tool that will attack a vulnerability in an asset; or it is the action
of attacking a vulnerability (exploiting a vulnerability) thereby realising the threat against that
asset. Malware in the form of viruses, Trojans, root-kits and most often worms frequently (but
not always) use exploits. For example, while phishing is an example of exploiting human trust, in
this document exploits refer to tools or processes specifically aimed at exploiting vulnerabilities
in software and electronic systems.

Patch

A patch is a piece of data used to update a software product [36]. A security patch is a change
applied to an asset to correct the weakness described by the vulnerability. This corrective action
will prevent successful exploitation and remove or mitigate a threat’s capability to exploit a
specific vulnerability in an asset. In a broader sense a patch can be used to correct a flaw that
might not be security related, such as performance issues, or could add new functionality. These
are non-security patches and are usually called functionality or stability patches. A patch usually
consists of packaged pieces of electronic systems code used to replace existing flawed code. A
patch is distributed in one of three ways:

1. as a patch to the source code of a program

2. a patch to the compiled binary code

3. a complete file(s) replacement.

Typically a patch contains a small change and patches with large changes are usually given
different names such as a service pack or cumulative update. Vendors such as Sun Microsystems,
Microsoft, Oracle Red Hat etc. often have a defined nomenclature for their updates [37, 38, 3]. In
this document the primary discussion will focus on security patches unless otherwise specified,
as security patches are the the most critical patch and the most difficult to manage. This is for
two reasons: failure to deploy a security patch may result in an intrusion; and security patches

CHAPTER 1. INTRODUCTION 6

are released more often, with functionality patches usually rolled into product release cycles. A
fuller discussion on this is provided in section 3.2.2.

Remediation

Remediation will refer to the super-set of possible ways of mitigating a vulnerability of which
patches are just one method. Configuration changes, complete removal of the software, anti-virus
signatures and other workarounds could all possibly mitigate a vulnerability, and will be referred
to in general as remediation [32].

1.3 The Need for Patch Management

Correct patching is not simply a matter of installing every patch released by a vendor. Currently
there are over a hundred new vulnerabilities announced each week, and this number appears
to be growing (see 2.3.1). Each of these vulnerabilities usually has a corresponding patch or
workaround. Sometimes these vulnerabilities remain unpatched for a period of time. An admin-
istrator needs to know which of these vulnerabilities is relevant to her organisation and what their
implications are.

The window between the release of a vulnerability and the release of an exploit is decreasing [7]
and, with some worms appearing hours after the release of a vulnerability [39], this window is
often smaller than the average organisation’s patch deployment window. This is partly because
patches come with their own set of problems, and sometimes do more damage than than the
exploitation of the vulnerability [40]. Thus, an administrator needs to perform a risk analysis on
each one, often with incomplete information.

The Morris worm of 1988 lead Bill Cheswick to bemoan firewalling practises with the now
famous description “a sort of crunchy shell around a soft, chewy centre.” [41] With the advent
of mobile computing, multiple service multiplexing over HTTP, ubiquitous e-mail and instant
messaging, the phrase has only become more applicable. A firewall never was, and never will be
a suitable defence by itself. End-user desktops are now the most commonly targeted, as threats
exploit end-user trust with confidence tricks over the web, instant messaging, e-mail and more.
Decision making is not, therefore, the only bottle neck, as a patch often needs to be deployed to
hundreds or thousands of machines and not just internet-facing servers.

CHAPTER 1. INTRODUCTION 7

Each machine or group of machines has a different configuration or circumstances that need to
be taken into account, which makes patching non-trivial. Different operating systems often have
different methods of patching, thus if an organisation has followed the (often sensible) route
of platform differentiation, they will need multiple patching mechanisms. Even if an organi-
sation has a homogeneous computing platform, different software products may require their
own patching mechanism, particularly in a Microsoft environment, as no third-party patches are
currently handled by Microsoft’s patching system.

These complexities all contribute to the quagmire many administrators and home users find them-
selves in when it comes to patching. There are too many vulnerabilities, requiring too many
patches, with too many deployment mechanisms, to be deployed to too many machines. A more
in-depth discussion of these problems is provided in chapter 2.

1.4 Objectives

The objective of this dissertation is to bring some sense into the patch management discussion.
It aims to provide a discussion of all aspects of patch management that will hopefully provide
guidance to managers, system administrators and software vendors. The dissertation provides
an analysis and definition of the theory of patch and vulnerability management which is then
distilled to provide practical advice.

Specifically, there are seven objectives. They start as investigations into the state and causes of
patch management, and move toward providing solutions for some of the problems thus discov-
ered.

The first objective is to provide an analysis of the vulnerability life-cycle. This will place patches
in their correct context providing discussions on vulnerability disclosure, exploits and patches.
The second objective is to provide an analysis of what causes vulnerabilities and the trends
surrounding the vulnerability life-cycle. The third objective is to provide a discussion on patches
and the problems which lead to such difficulty managing them. Together these three objectives
describe the problem any solutions will need to address.

The fourth objective is to provide a method for implementing a patch management policy capa-
ble of effectively addressing the problems discovered. This method will be practically applica-
ble, allowing implementation without recourse to multi-volume risk management strategies and

CHAPTER 1. INTRODUCTION 8

expensive consultants. The fifth objective is to provide a discussion on how vendors can best im-
plement a scheduled patch release strategy given the increasing trend towards releasing patches
on a predictable schedule. Together these objectives provide a discussion and policies which can
be used to solve many of the problems discovered under the previous headings.

The sixth objective is to provide a discussion on where the described patch management policy
can be automated and benefit from software tools. This will also include a discussion on currently
available tools, with a view to separating out the marketing hype present in this young growth
industry. The seventh objective is the attempt to create or integrate some of these tools, to support
the policy developed in the previous objectives.

A summary of these objectives is that the research conducted hopes to provide:

1. An analysis of vulnerabilities, exploits and patches by discussing the vulnerability life-
cycle.

2. An analysis of vulnerability, exploit and attack trends.

3. An analysis of patches and their problems.

4. A discussion on how to implement a patch management policy.

5. A discussion on how vendors can implement a scheduled patch release policy.

6. A discussion on patch management tools and automating parts of the policy.

7. Tools to help automate and integrate parts of the policy.

The first is to discuss the cause of patching; vulnerabilities. Vulnerabilities are the root problem
and, as such, a thorough understanding of them is required. The trends, causes and influences
of vulnerabilities and related research will provide an understanding of the need for patches and
what specific problems patches are being deployed to fix.

1.5 Methodology

In reaching the objectives discussed in the previous section, four primary methods will be used,
namely:

CHAPTER 1. INTRODUCTION 9

1. a literature survey

2. argumentative analysis

3. case studies

4. best practice models

Each of these will be used to support or refute hypotheses, where best practise models are often
the results of a hypothesis that holds true.

The original intention of this work in its early incarnation was to provide an elegant software
solution to solve the patch management problems. However, it was soon discovered that the
problem is too complex to be solved by software alone. A quotation by Bruce Schneier aptly
describes this, “If you think technology can solve your security problems, then you don’t under-
stand the problems and you don’t understand the technology.” [42] While time is spent discussing
the plethora of software written to perform patch management tasks, it does not form the bulk
of this document. Rather a thorough identification of the problems around vulnerabilities and
patches is followed by solid policies and recommendations.

The large amount of writing on patch management and its related fields is drawn upon in each
context. Often one author’s work can be used with another’s to form a derivative work that
adds to the common wealth of security knowledge. This synthetic work is a vital tool on many
levels, and will hopefully enable consensus to coalesce. The synthesis of tools will bolster the
interaction necessary for a successful multi-layered approach to security. While this may seem
like an obvious point, the advent of security companies and their related profit motive often
results in reduced collaboration in attempt to become the sole product vendor of a product range.
New models and arguments can be derived or created from the existing literature. Thus, the
method of research is largely analytical.

Finally, it should be noted that the majority of the references are electronic. This was done for two
reasons. The first was to try to ensure that URLs for all work available on-line were included,
allowing a reader to quickly locate them. However, the many purely electronic references are
due to the immediacy (at the time of writing) of many of the issues discussed. As there has
been little published research dealing with several of the points and events discussed in this
thesis, strong reliance on elctronic references was unavoidable. Additionally, there are still a
significant number of peer-reviewed papers and other ’traditional’ references to legitimise many

CHAPTER 1. INTRODUCTION 10

of the points. The author has taken into account the potential innacuracy of online sources, and
used ’traditional’ references to back up core arguments.

1.6 Conclusion

Information, computer and network security is in a poor state. Specifically, our current method-
ologies for responding to malware are insufficient. Patch management provides a final solution
to the holes that malware exploits. However, it has its own set of problems that must be dealt
with. This dissertation will analyse the issues around patch management and plot a way forward.

This will be achieved in four parts. First, the patch paradox will be discussed, analysing the
difficulties in remediating vulnerabilities in contrast with the difficulty in managing and deploy-
ing patches. Here a meta-policy framework is provided with an in-depth discussion of how an
organisation can best implement a policy to realistically and effectively remediate vulnerabilities
with patches while minimising the extra risk patches include. Following this, an argumentative
analysis of the current trend of scheduled patching is used to provide advice as to how vendors
could best implement a patch release policy. Finally, the technological aspects of patching are
discussed - specifically, how a patch management policy can benefit from automation, and where
current solutions fit in.

Chapter 2

Vulnerability and Patch Management

2.1 Introduction

“This impossible reality has sent patching and the newly minted discipline as-

sociated with it “patch management” into the realm of the absurd. More than a

necessary evil, it has become a mandatory fool’s errand.”

–Scott Berinato, “Patch and Pray” CIO Magazine [40]

Software vulnerabilities have always existed, and probably always will. They result from the
mistakes of human programmers. This section begins by providing an analysis of and discussion
around the trends and statistics of vulnerabilities. Patching is the final response to a vulnerability,
and patching trends will thus follow the cycles of vulnerability trends closely. An understanding
of vulnerabilities will allow better decisions about when and how patches should be deployed.
Hence, vulnerability trends or a case-study on a recent worm such as Blaster or Slammer usually
form the introduction to most papers on security, and particularly on patch management. Suc-
cessful worm runs have the effect of motivating the security community to action, for example
the CERT/CC was formed in response to the Morris worm of 1988 and much of the recent work
into patch management came after the worm outbreaks of 2001 [43].

Vulnerability management is the process of identifying, monitoring, and responding to vulnera-
bilities. Vulnerabilities in a released product are not managed risks that the product manufacturer
has an understanding of. They are unknowns, and the liability for these risks often falls to the

11

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 12

customer. It is thus the customers’ responsibility to identify the vulnerabilities affecting them, in
order that better risk management decisions can be made. This chapter provides a description of
vulnerabilities and the trends they are facing.

• They are increasing.

• They are being exploited more often.

• The time until an exploit is released is shrinking.

Patch management is the process of correctly and timeously applying software patches to min-
imise downtime and the attack surface of a system. As patches are release in response to a
vulnerability, they too cannot be predicted. Quantifying patch management is thus a difficult
task. The complexities of vulnerabilities become apparent when attempting to fix them. These
complexities prevent patches’ being deployed timeously to vulnerable systems - in some cases
patches are only deployed months later. For the few administrators diligently applying patches,
the task is still non-trivial. The problems with patches and patching will be explored. These
problems will provide the guidance necessary in formulating solutions in later chapters.

2.2 The Vulnerability Life-Cycle

As discussed in the previous chapter, a vulnerability is a weakness in an asset which could be
exploited by an entity. The asset could be anything from a computer system to an employee. In
the context of this chapter we will be discussing software and hardware vulnerabilities affecting
computerised systems. There are several classes of vulnerability, each of which could allow a
variety of activities, the worst of which being remote code execution leading to a full system
compromise. For a discussion of trends to occur, an understanding of the vulnerability life-cycle
is required. The life cycle of a vulnerability has several stages; Arbaugh et al. [44] suggest there
are seven stages with an additional stage mentioned by Browne et al. [45] of the vulnerability
becoming passe. Schneier [1] has a similar description of stages but does not differentiate be-
tween the release of a scripted exploit and the popularisation of the vulnerability. The stages are
as follows:

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 13

1. The creation of the vulnerability. This is when the vulnerability is created during the
implementation of the vulnerable product.

2. The discovery of a vulnerability. The vulnerability in the product is found. Several people
could discover the vulnerability at different times. Little is ever publicly known about this
step.

3. The discovered vulnerability is disclosed. The disclosure could come from a variety of
sources, in a variety of ways. It could be announced by the vendor or an independent
researcher, or secreted away in a product’s Change Log1.

4. The vulnerability is corrected. This is usually done by the vendor releasing a patch or
workaround. This should lead to an overall reduction in successful intrusions.

5. The vulnerability is publicised. This can happen in a variety of ways; for example news
reporting, publishing an advisory, worm activity; but the end effect is that many people
know about the vulnerability.

6. The exploit is scripted. This can mean that workable exploit code was released, or instruc-
tions on how to produce one are released. In either case, the result is that the number of
attackers is greatly increased as those with less skill (script kiddies) can now perform the
attack.

7. The vulnerability becomes passe. Attackers become disinterested in exploiting this vulner-
ability. This is not guaranteed to happen with every vulnerability, and some vulnerabilities
(and exploits) are shown to have cyclical popularity [44].

8. The vulnerability dies. This happens when the number of possible targets vulnerable to
exploitation drops to an insignificant level.

The steps follow this rough order, but there can be significant variation. For example the vul-
nerability could be first corrected with the disclosure following after the correction is reverse
engineered; or the disclosure, correction and publicity could all happen at once. Arbaugh et al.

[44] note that in the past the vulnerability life cycle was theorised to look like something like
Figure 2.1, which is a replica of Schneier’s life cycle [1]. However, current research has shown
some of these assumptions to be incorrect and has provided empirical data to better understand

1A register of changes made in a product from one version to the next.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 14

Figure 2.1: Theorised Vulnerability Life-Cycle [1]

some parts of the curve. The corrected life-cycle can be found in figure 2.2. There are several
important differences.

• Arbaugh et al. [44] found that the significant factor which triggers an increase in the
number of reported intrusions was the scripting of the exploit. This caused a dramatic
increase in the number of attempted intrusions even if the correction (patch or workaround)
had been released previously, thus rendering false the assumptions of the original theorised
model, particularly the presumed immediate effectiveness of releasing a patch. In the
resulting figure 2.2, the public disclosure of the vulnerability and patch are released at the
same time. However the vulnerability could be disclosed immediately before a vendor can
release a patch, but according to Arbaugh et al. this would make little difference as the
scripting of the exploit is the significant factor. For a detailed discussion about the different
types of disclosure refer to sections 4.1 and 4.2.

• Browne et al. [45] found that the number of reported intrusions can be modelled with the
formula C = I + S × √M where C is the cumulative count of incidents, M is the time
from the beginning of the exploit cycle and I + S are the regression coefficients to fit the

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 15

curve to the specific incident. Thus, we know that the spike in exploitations will level off
and tend towards a constant over time.

• Eschelbeck’s [8] empirical data showed that the number of vulnerable machines had a
half-life, which was 19 days in 2005, i.e. after 19 days the number of vulnerable machines
halved. This data could explain why the increase in intrusions discovered by Arbaugh et

al. levels off in the curve discovered by Browne et al.

• Eschelbeck [8] also discovered that most exploits are available before the end of the first
half-life period of vulnerable machines. This is represented in the diagram by the scripted
exploit being released before the first half-life.

• Browne et al. [45] discuss the drop-off in the number of intrusions when the vulnerability
becomes passe. The number of intrusions would not drop off like that if the vulnerability
had died (i.e. there were an insignificant number of vulnerable machines). However, both
Eschelbeck’s [8] and Browne et al.’s empirical data show that there may be repeated spikes
in intrusion activity at a later date. Eschelbeck hypothesises that this is because of new
unpatched machines being deployed, effectively extending some vulnerabilities’ life span
to the nearly infinite. In addition, if another event were to occur which would publicise
the vulnerability (most notably a worm), another spike may occur. Thus, the death of a
vulnerability is rarely observed, and the drop in intrusions will most likely be due to the
vulnerability becoming passe. However, there is little empirical data for this drop-off,
which is drawn as a steep curve, though this is not backed up by empirical findings.

• The small increase in intrusions between discovery and disclosure follows an exponential
increase as a select group of Black Hats exploit the vulnerability, either because they dis-
covered the vulnerability on their own, or because the vulnerability was being exploited
in the wild. There is no empirical evidence to support this, however if a small group of
black hats is slowly disseminating the information in a controlled manner to prevent mass
proliferation and possible detection, it would make sense for this to grow exponentially, in-
creasing faster as more people discover the exploit and tell their small group of associates.

This appears to be as complete an image as possible of the most common vulnerability life cycle.
The most disturbing part of this life-cycle is the large number of intrusions that appear to occur
well after the release of a patch. The trends discussed below will further discuss this life-cycle,
highlighting in particular those aspects of vulnerability, exploit- and patch discovery and creation
that are becoming more difficult to manage, and justify the solutions laid out in section 3.2.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 16

Figure 2.2: Generalised Model of Empirical Findings

2.3 Vulnerabilities, Malware and Exploitation Trends

In security, the variables are a moving target. This section will explain the direction in which that
target is moving. A discussion of the trends and their likely causes is presented. These trends
useful in situating any patch management discussion in the reality of the security landscape. In
the context of this discussion, malware exploiting holes due to vulnerabilities in software are
discussed. Other attack vectors such as e-mail, instant messaging and other confidence tricks fall
outside of the scope of this discussion.

2.3.1 Increasing number of vulnerabilities

The general consensus is that there is an increase in the number of vulnerabilities. This is most
often due to the increasing complexity of software and the increase in the number of software
projects [46]. According to the National Institute of Science and Technology (NIST) [47], it
is estimated that Microsoft Windows 2000 contains 35 million lines of code as compared with
Windows 95’s 15 million estimated lines and Windows 3.1’s 3 million. Similarly RedHat Linux

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 17

7.1 had 30 million lines of code in 2001 up from 170 000 lines in Linux distributions of 1992. It
is estimated that that the number of software bugs ranges from 5-20 per 1000 lines of code [48].
Thus on these estimates it can be seen that the number of potential bugs has grown immensely.
Not all of these bugs will result in security flaws however, and it is difficult to make these extrap-
olations. For example the Qmail mail server written by D.J. Bernstein offers $500 to anyone who
can find a security vulnerability in the code2. This has been unclaimed in 10 years. Sendmail,
on the other hand, has had a plethora of vulnerabilities in its 20 years [49]. The ’rush to market’
attitude of many software vendors is resulting in code with a higher number of vulnerabilities
per line, often with poor architectures that make them difficult to secure post-completion [50].
In addition, this increasingly complex software is increasingly interacting with other complex
software. The low cost of communication over the internet and its ubiquitous nature is replacing
other means of electronic communication, opening systems not designed for the internet up to
new vulnerabilities and creating unforeseen situations between system interactions [8]. Even if
vendors do provide the ability to lock down their software, it is often not distributed in a secured
state; couple this with a lack of security knowledge among system administrators, and a security
industry that is woefully understaffed, and the reason for many of the preventable configuration
errors becomes clear.

The most commonly quoted statistics of the increasing number of vulnerabilities come from the
Computer Emergency Response Team/Coordination Centre (CERT/CC), who compile statistics
for each quarter [51]. These statistics are taken from the Common Vulnerabilities Exposure list
which assigns a common name to every discovered vulnerability. These statistics show that the
number of vulnerabilities are increasing each year. The growth in the number of vulnerabili-
ties each year follows an almost exponential upward trend, except for 2003 where the number
dropped to 2000’s levels. This could possibly be because of the dot.com crash and the resulting
decrease in technology related work which lead to less vulnerability research, although this is
unconfirmed. In the first two quarters of 2005 the upsurge is dramatic with the number of vul-
nerabilities averaging 15 a day compared to the previous high in 2002 of 11 a day . However,
the number of vulnerabilities reported by different vulnerability databases is not consistent. The
Open Source Vulnerability Database in particular is a high-quality resource which claims that
there were almost 6200 vulnerabilities in 2005 [52]. This number is almost double CERT’s.
This appears to be because OSVDB makes a point of creating and entry for every vulnerability,
whereas CVE tends to group vulnerabilities into one issue [53]. In previous years the contrast
is not as large, this is most likely because OSVDB only started breaking apart issues into sepa-

2Barring Denial of Service or unreasonable exploitation requirements.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 18

rate vulnerabilities in 2004. This shift in reporting standards prevents 2004 and 2005’s numbers
from being viewed in context of years previous to them. There is still a jump from 4628 to 6161
number of reported vulnerabilities in OSVDB’s stats indicating a significant increase. However,
CVE itself did not claim to provide comprehensive coverage of all vulnerabilities and is only
made full completeness a goal in 2004 [53]. This still shows a jump from 2283 to 3888 reported
vulnerabilities [54]. In addition the Secunia vulnerability database [55] has shown a rise from
approximately 3190 vulnerabilities in 2004 to 4120 in 2005, which is consistent with CVE’s rise.

As long as the preconditions mentioned above hold true, there is little reason for these numbers
to stop their upward trend. Discussing the seriousness of these vulnerabilities, Eschelbeck [7]
posits two hypotheses: there is a constant discovery of new critical vulnerabilities, this leads to
a situation where half of the most common and critical vulnerabilities are replaced every year
and; these vulnerabilities often have an infinite lifespan due to the continual deployment and re-
deployment of machines with unpatched software. Thus vulnerabilities have a cumulative effect,
where the marginal discovery of vulnerabilities is increasing and the total number of critical
vulnerabilities are increasing as previous vulnerabilities are not being successfully mitigated.

2.3.2 Increasing number of attacks

The number of increasing vulnerabilities has predictably lead to an increase in both the number
of attacks and the number of successful attacks. However, this is a complicated statistic to
measure, for several reasons. To monitor attack trends, some statistics indicating the number
of attacks need to be collected. However, many attacks are not detected, and others are detected
but not reported. Gathering statistics is a non-trivial task; first, if an attack goes undetected, then
quite obviously it cannot be counted, and second, reporting is driven by the victim and many
organisations who are attacked are either reluctant to report them [56] for publicity reasons,
or administrators have dealt with the vulnerabilities and lose interest [45]. In addition, it is
difficult to get organisations to allow outside entities to monitor their network [56]. An alternative
would be to conduct penetration tests and note the number of reported intrusions. However, this
provides an difficult dichotomy where on one hand it is illegal to attack sites without prior consent
but, prior warning would influence the site’s reporting rate. Worse still, there is evidence that
attackers are moving away from using mass compromises and focusing on more targeted Trojan
and rootkit installs, which provide more manageable results and help to evade detection [16].
The Hacker Defender anti-detection service provide a service where a semi-unique version of

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 19

their Hacker Defender rootkit can be bought and used in a “pointed attack” specifically designed
to avoid detection by anti-virus software by reducing the chances of the anti-virus researchers
crafting a general detection signature for the rootkit and providing many unique versions [18].

This leaves two possibilities for estimating attack activity. In the first approach, taken by the
CERT/CC, sites were asked to confidentially report incidents3. However, this approach was ini-
tially difficult with estimates for the number of incidents in 1995 ranging from 1200 to 22800
[57], and was eventually discontinued in 2004 as incidents were so widespread that they “provide
little information with regard to assessing the scope and impact of attacks [51].” The alternative
approach taken by the SANS Internet Storm Center and their DSHIELD [58] project is to receive
submissions on network activity from distributed sites and perform central analysis of the data.
This allows the number of attacks to be better modelled, however it does not provide information
as to how many of those attacks are successful, unless a successful attack displays some obvi-
ous behaviour (this is often true of worm activity, but not of human exploitation). Some of the
resulting noise from attacks can be used to perform a back-scatter analysis, which is particularly
effective for Denial of Service attacks [59]. However difficult it is to model attack trends, re-
search tends to agree that the number of attacks and incidents is increasing every year [57, 60].
Given the increasing number of vulnerabilities it is hypothesised that this will lead to a higher
number of successful attacks. Indeed, this hypothesis is borne out by the continuing success of
automated self-propagating malware (worms) and their continued activity even after a patch has
been available for several months [8]. This is further corroborated by DSHIELD which has seen
the average time between attacks drop below five minutes in both August 2005 and September
2005. This time to live or survivability statistic gives an unpatched machine less time until it
is compromised than it would take to download and deploy the necessary patches [61]. It is
clear, however that not enough public research is being conducted in threat analysis. If the secu-
rity community had more information on what was occurring in ’the underground’, less coarse
assumptions of worse case scenarios would be possible.

There are several reasons for the increasing number of attacks. CERT/CC identifies an additional
six trends, three of which are relevant [62]:

1. The increased automation in attack tools has lead to faster and more widespread exploita-
tion due to several advancements. Advanced scanning techniques are regularly employed,

3an incident could be made up of several attacks

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 20

for example scanrand4 can portscan a network in record time [63], while nmap5 can de-
ploy a variety of stealthy scanning techniques. The release of exploit code has historically
heralded the advance of script kiddies6, however running and managing these exploits is
becoming even easier with tools such as metasploit7, which allow for point and click ex-
ploitation and provide a toolkit with which future exploits can be rapidly developed. When
the advanced scanning is coupled with automated exploitation (in tools such as AutoScan8)
an entire network block can be stealthily scanned and trivially exploited if the discovered
systems are vulnerable. This exploitation often has the ability to propagate, allowing a
malware creator to compromise several hosts without much involvement, and has proved
particularly successful among the most vulnerable, home users. This has provided an in-
crease in the coordination of distributed attack tools, allowing large bot nets to be used in
massive distributed malicious activity.

2. Attack tools are becoming increasingly sophisticated and complex. This is making attack
detection and prevention increasingly difficult. This sophistication is being packaged in
modular code and redistributed. This makes it possible for a relatively inexperienced user
to launch a highly sophisticated attack utilising a range of difficult-to-detect payloads -
ranging from reverse shells to DLL-uploaded ssh servers - with the metasploit framework.
In addition, the modularity of these tools allows different methods to be recombined and
reused, which makes detecting a defined set of steps more difficult. Thus malware authors
can rapidly create several different iterations of one piece of malware in an attempt to avoid
detection by anti-virus software [16].

3. Increased permeability of firewalls. The advent of HTTP as the dominant protocol has
caused a shift, whereby services are no longer differentiated by port, but are multiplexed
over one port with protocols built on top of HTTP. For example corporate e-mail filtering
policies become meaningless to users utilising web based e-mail services such as Gmail
or Hotmail. The threats these services can introduce lead the US military into blocking
access to web-mail products on their unclassified networks [64]. The rise of services such
as instant messaging and e-mail move much of the content control decision-making from
the firewall to the end-user. Attackers have recognised this and now employ a variety of at-
tacks which exploit trust in the end-user using confidence tricks [16]. Phishing, pharming,

4http://FINDOUT/
5http://insecure.org/
6Less experienced cracker who use tools provided by more experienced authors to break into systems.
7http://metasploit.org/
8http://autoscan.free.fr/

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 21

mistyped domain squatting, and promulgation via e-mail or instant message are all exam-
ples that ’trick’ the user. There is no need to look for a vulnerability in a firewall when
you can instant message a trojan to several users. Moreover, mobile devices and portable
storage now allow malware to piggyback its way through a firewall via the sneaker-net9. It
is very difficult to control every laptop, USB flash-stick, digital camera, MP3 player and
memory card which interacts with a network. This can render mobile devices one of the
most common infection vectors for an organisation. This has allowed attackers many more
targets; no longer are only internet-facing servers vulnerable, an attacker could potentially
compromise any machine in the organisation, particularly end-user desktops.

2.3.3 Exploit window shrinking

The time between the release or announcement of a vulnerability and the release of public exploit
code is known as the exploit window. This window is widely reported and agreed upon by many
researchers [45, 2, 7, 62, 17, 16, 65]. Indeed, the evidence seems to agree; the Nimda worm
appeared a year after the vulnerability had been announced, the SQL Slammer worm appeared
after six months, Slapper took six weeks, Blaster halved that to three weeks, Sasser took two
weeks, Zotob appeared after five days, and the fastest vulnerability-to-worm cycle to date has
been the Witty worm, which appeared 36 hours after the vulnerability was announced [66, 67].

The time from the disclosure of the vulnerability until the release of a scripted exploit, the win-
dow of exploitation, is the most significant indicator of when a vulnerability has progressed from
a theoretical discussion to both a “likely to occur” and “likely to be successful” attack. A quick
look at the exploit window for previous worms shows that the exploit window appears to be
shrinking. This hypothesis is confirmed by several sources [65, 8, 56]. In addition, the exploit
window appears to be shrinking faster than the remediation window. A powerful example of this
reduction is the emergence and growth of 0-Day(Zero Day) exploits. The term ’Zero Day’ tradi-
tionally refers to an exploit for an undisclosed vulnerability, but is increasingly used to refer to
scripted exploits released on the same day as the vulnerability was disclosed. In both situations
the exploit window is but a few hours.

CERT/CC hypothesises [56] that underground groups could be privately hoarding exploit tools
which could be made public immediately when a vulnerability is released, thus skewing the time

9The sneaker net refers to the manual networking brought about by people physically walking devices from one
place to another.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 22

from public disclosure of a vulnerability until public disclosure of an exploit. However, the
most likely reason for the shrinking exploit window is an increase in the sophistication of exploit
development tools [62, 56]. Some of these advances are:

1. The metasploit framework provides templates for many combinations of exploit types,
payloads and target operating systems. An exploit can be rapidly created by utilising the
metasploit framework which reduces the amount of effort required in development and
provides access to a far greater range of sophisticated payloads.

2. The increase in abuse of web applications makes exploit development quite easy [68].
Vulnerable software can be easily found through search engines [69], the source code is
easily available (allowing an attacker to find vulnerabilities faster), and often exploitation
only requires a simple request. The requests can be rapidly developed with tool such as
the Perl LWP module or Metasploit.

3. It is becoming increasingly easy to reverse-engineer patches to find and exploit the vulner-
ability they are supposed to repair. In a recent demonstration the MS05-025 patch from
Microsoft was reverse-engineered in twenty minutes [70]. This rapid turnaround means
that it should be assumed that an exploit exists a few hours after a patch is released.

4. The re-use and modularity of existing malware. This is particularly true of worms and bots.
There are several propagation methods from mass-mailing to exploitation, from which a
worm author can pick and choose. In addition modifying existing worms to utilise new
exploitation techniques or incorporate new payloads is far easier than writing a new one.
The number of variants of the more popular worms, such as Sober and Bagle, testify to
this [67].

All of these advances contribute to making exploit development easier and faster, and future
advances will only reduce this window.

2.4 Problems with Patches

The vulnerability cycle described in figure 2.1 above assumes that the number of intrusions would
start to decrease after the release of a correction or patch. This decrease should continue until the

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 23

number of vulnerable machines reaches some negligible value and the vulnerability reaches the
last stage of its cycle. However, both Eschelbeck [8] and Browne et al.’s [45] research shows that
this is not the case. A large number of notable worms within the last few years have exploited
vulnerabilities for which a patch already exists. In addition, there are cyclical re-infections in the
long-term, resulting in an infinite vulnerability life-cycle [8, 45]. This demonstrates that patches
are not being deployed to a large number of machines, and for the few that are, with half the
most prevalent vulnerabilities being replaced every year [8], the patch treadmill is here to stay. In
some cases the notification of vendors has been poor and patches have gone uninstalled because
administrators either didn’t realise there was a patch or didn’t realise its importance. However,
even when there is ample notification, research by Rescorla [71] showed that in the case of a
critical vulnerability in software more likely to be patched (OpenSSL), after two weeks 60% of
vulnerable servers were still unpatched. Anecdotal evidence points to a variety of problems with
patches that prevent them from being rapidly and regularly deployed [40]. Solutions to these
problems and others are provided in the next three chapters. Chapter 3 describes how users of
software can best manage patches coming from vendors, chapter 4 describes how vendors can
best prevent the sorts of problems described below and chapter 5 describes technical solutions
that can be used to ease the process.

2.4.1 Unpredictable Patches

A security patch should remove or mitigate a vulnerability, no more and no less. However,
this does not always happen. Patches sometimes break the service they are supposed to repair,
introduce changes that break compatibility and interoperability, add new and unwanted features,
introduce new vulnerabilities, re-introduce old vulnerabilities or, in some cases, fail to repair the
original vulnerability [2]. When there is a problem with a patch the vendor usually re-releases
it. This brings its own set of problems such as removing and replacing the faulty patch and
duplicating patch downtime and effort. There are numerous examples of faulty patches, and
plenty of anecdotal evidence available on various support forums to make administrators wary of
faulty patches. The cost of applying a patch is increasingly better understood, however the costs
of potential patch failures weighed against the costs of not applying a patch is not a risk trade-off
many are equipped to make. According to Beattie et al. this skews the risk analysis towards not
applying a patch [2], establishing a situation where administrators are reluctant to apply patches
for fear of creating a problem worse than that presented by the original vulnerability.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 24

Some vendors choose to provide specific patches, allowing an administrator to limit the change
introduced by a patch, by providing a patch for a specific issue. The Debian security team even
goes so far as back-porting security fixes to the older ’stable’ software version. This can create
problems with multiple patches over time. Some patches deprecate or depend on other patches,
and without careful planning and an intelligent patch tracking scheme these inter-dependencies
can result in undefined results. To avoid this it is also useful to provide cumulative patches
which contain multiple past patches, with the inter-dependencies pre-computed and tested, to
ease bringing a newly deployed software instance up-to-date with its patches. However, some
vendors find implementing proper patch tracking difficult and opt for cumulative patches only,
thus maximising the change administrators make to their systems and increasing the chance of
a patch breaking something. The lesson to vendors here is simple: keep patches specific and
effective.

Section 2.4.6.1 provides a good example of how a patch can cause unwanted results.

2.4.2 Too Many Patches

As the number of vulnerabilities announced each year grows, so too do the number of corre-
sponding patches. Each patch requires a significant amount of work before it can be deployed
and forgotten about. The full process is discussed in chapter 3. The amount of time required to
discover patches, research their related vulnerability, test the patches and then make risk man-
agement decisions far exceeds the time provided by the shrinking exploit window. Worse still,
the exploit window is shrinking faster than the remediation cycle. There are several inefficiencies
in the remediation cycle which exacerbate the problem.

Often patches are released by multiple vendors via different mechanisms which can make mon-
itoring for and installing patches involve a large duplication of effort, thwarting organisational
centralised patch distribution programmes. For example, users of Microsoft Windows and Adobe
Acrobat will need to integrate both Microsoft and Adobe’s patch distribution infrastructures.

The unstable nature of patches requires that an organisation perform thorough testing of each
patch. However, particularly for large organisations with many machine and software config-
urations, duplicating every relevant configuration and interaction between critical applications
can prove arduous. When this process is applied across several patches it can quickly become
untenable.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 25

Vulnerabilities in libraries on which many applications depend can require that each version of
the vulnerable library is patched. This can create a situation where sometimes one vulnerabil-
ity requires several patches from several different software vendors. This combines the above
two problems to create a situation where both the problem of multiple distribution methods and
complex testing lead to a deployment cycle which far exceeds the window in which attackers are
most active. This is demonstrated below in the GDI+ JPEG vulnerability discussed in section
2.4.6.2.

2.4.3 Window to Patch is Shrinking

As the window from vulnerability to exploit deceases (described in section 2.3.3) so too does
the window of time available for patching. The vulnerability life-cycle described in section 2.2
showed that the scripting of the exploit was the significant factor in any increase of intrusions.
Thus, for an administrator to avoid a significant level of attacks the patch or mitigation should
be deployed and working before the release of the exploit. In the case of the Witty worm [39],
the exploit was released just thirty six hours after the announcement of the vulnerability. This
is not enough time to perform even basic vulnerability assessments and patch deployments, let
alone provide significant testing on the patch, a crucial step to avoid the problems with unstable
patches. In some cases this may not be enough time to notify users and have them download the
patch.

The shrinking of the vulnerability to exploit window is not the only factor in the decreasing patch
window. While the scripting of the exploit leads to a significant increase in attacks, this is not
to say there are not attacks before this time. When an exploit is scripted it becomes available
to a large group of people, often termed script kiddies, who do not have the skill, or money to
buy the skill, to write an exploit themselves. Following this logic, the largest threat of potential
attack before the scripting of an exploit are the group of people with skills or money. So, while
an organisation may not yet be at threat from automated worms wreaking havoc, it may be
vulnerable to other activities such as corporate espionage. As security threats on the internet
become increasingly criminalised, the threat from such attacks increases. Unfortunately there is
very little public research into the activities of skilled attackers and the trends surrounding their
activities. However, when a serious vulnerability is announced there is usually a large increase
in activity on the vulnerable port as detected by organisations such as DSHIELD [58]. Ideally a
patch or mitigation should be deployed before this time to prevent possible attacks in the future.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 26

The vulnerability and exploitation trends discussed in the previous section show that the admin-
istrator does not have the luxury of time. Thus, an uncomfortable trade-off exists, with two
conflicting pressures when timing the application of a patch; a pressure to wait for the patch to
be tested by the community to prevent the problems of unstable patches, and a pressure to patch
immediately to prevent exploitation.

2.4.4 Complex Patches

Not every patch is simple to deploy. While research is being put into creating easy to install
and distribute patch packages [72, 73], the complexities of software interconnectedness often
manifests itself. Programmers often use functionality provided by shared libraries to prevent
having to reinvent the wheel and minimise the size of their applications. The result of this is that
applications often have several dependencies. Thus, if one of the core dependencies is patched,
this could potentially affect every application depending on it. Additionally, some applications
may depend on different versions of another application, requiring several versions of a library
to be installed.

However, dependencies don’t apply only to applications, patches too, often have their own de-
pendency hierarchy. Sometimes one patch may be required to be installed before another. This is
not always a strict dependency. For example, in the case of a recent patch against a vulnerability
in Windows Meta Files [74] an unofficial patch was provided until Microsoft could release an
official patch. There was no specific patch dependency tree (one patch could be deployed without
affecting the other), however if the unofficial patch was removed before the official patch was
installed, the machine would be left vulnerable for the period of time in between. Thus it was
necessary for an administrator to first install the official patch then remove the unofficial one, a
rather counter-intuitive process.

Both of the examples provided in section 2.4.6 demonstrate this ’dependency hell’ quite well.

2.4.5 Hard to obtain patches

The problems with patches are not always in the deployment, as getting ahold of them in the
first place can sometimes be problematic. There are many possible reasons for this, although

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 27

it is becoming rarer as software vendors become aware of the importance of patching. There-
fore, many of the problematic patch deliveries are occurring within smaller software products,
among companies who do not have a defined patch release and management policy. Some of the
problems faced are:

1. Poor notification. After the bitterly fought full-disclosure debate, the notification of vul-
nerabilities and their corresponding patches has greatly improved. However, not everyone
has cottoned on. For example, a flaw in Google’s on-line mail client, Gmail, disclosed on
Oct 14th 2005 and patched four days later, was never publicly acknowledged by Google
[75]. While Google did not need to distribute a patch, it is still disturbing that such a
large software vendor believes it does not need to notify anyone of the flaw and its fix.
Other examples often include open-source software products which have a brief entry of
an undisclosed security vulnerability in the Change Log of the latest release [76]. Without
obvious disclosure of the vulnerability and corresponding fix, users are likely to stick to
older versions for longer if there is no other significant reason to upgrade.

2. Unregistered software. Some vendors will only issue patches to software holders with a
valid and verifiable license. This is problematic for two reasons. The first is that organ-
isations with legitimate licenses may have too many machines or a unique configuration
which makes registering each machine difficult. The second is that users of pirated soft-
ware (which in the case of Microsoft products is no small minority), while they shouldn’t
benefit from their unethical behaviour, can impact legitimate users of the software if their
software were to become infected with self-propagating malware that affected shared net-
working resources because they could not patch their software. Microsoft flirted with this
idea with their ’Genuine Advantage’ program [77] but soon relented and have made secu-
rity patches available. However, other proprietary vendors such as Solaris and Oracle still
require the purchase of a support contract or some other form of verification [78, 79].

3. Limited bandwidth. Some users and organisations either due to ineffective telecoms regu-
lations, limited network infrastructure or limited funds with which to purchase bandwidth,
or a combination of these may not have enough bandwidth at their disposal to rapidly
download patches. Much of the patch management effort has assumed access to broad-
band connectivity. In bandwidth starved countries such as South Africa and other emerg-
ing information economies (Brazil, India etc.) where many small organisations have only
an expensive dial-up or ISDN line, spending several hours downloading security patches

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 28

is not a suitable solution and often results in patches just not being applied. The corol-
lary of this is that it is unlikely their machines would participate in any large scale worm
propagation outside of their organisation, a bitter-sweet consolation for the administrators
performing the local mop-up operation.

2.4.6 Problem Patch Examples

Some of the potential problems patches can create are best illustrated by examples. Two such
’problem patches’ are discussed below. The first demonstrates how a patch can fail to effectively
fix a vulnerability, re-introduce a vulnerability, or conflict with existing software. The second
demonstrates how difficult it can be to discover which applications are vulnerable and ensure
that all traces of a vulnerability are patched.

2.4.6.1 SQL Slammer/Sapphire Worm

On July 24, 2002 Microsoft released the MS02-039 [80] patch for SQL 2000 Server and Mi-
crosoft Desktop Engine 2000 (MSDE), which patched critical buffer overflows. The overflows
could be triggered by sending trivially small UDP packets to port 1434. One day over 6 months
later, the SQL Slammer or Sapphire worm was released in a 376-byte UDP packet. According to
an analysis by the Cooperative Association for Internet Data Analysis (CAIDA) [81] the worm
infected at least 75 000 hosts. Moore et al. [81] had this to say about its spread:

In the first minute, the infected population doubled in size every 8.5 (±1) sec-
onds. The worm achieved its full scanning rate (over 55 million scans per second)
after approximately three minutes, after which the rate of growth slowed down some-
what because significant portions of the network did not have enough bandwidth to
allow it to operate unhindered. Most vulnerable machines were infected within 10-
minutes of the worm’s release. Although worms with this rapid propagation had
been predicted on theoretical grounds, the spread of Sapphire provides the first real
incident demonstrating the capabilities of a high-speed worm. By comparison, it was
two orders magnitude faster than the Code Red worm, which infected over 359,000
hosts on July 19th, 2001. In comparison, the Code Red worm population had a
leisurely doubling time of about 37 minutes.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 29

The only hindrance to the worm appeared to be its own effectiveness. It managed to infect a
huge number of machines, even though the patch had been released a significant amount of time
earlier. The time-line of the patch possibly shows why so few hosts had been patched 6 months
later.

The vulnerable library patched by MS02-039 was ssnetlib.dll, and Microsoft later released fur-
ther patches for SQL Server. On August 14 they released MS02-043 [82] which contained the
same version of ssnetlib.dll as MS02-039. On October 2 they released MS02-056 [83] which
included a newer version of ssnetlib.dll. On October 16, Microsoft released a cumulative patch,
MS02-061 [84] which contained all changes applied by MS02-{039,043,056}. However, on Oc-
tober 30 Microsoft released a security hotfix Q317748 [85] to fix a handle leak in SQL Server
2000 Service Pack 2. The hotfix contained a version of ssnetlib.dll released prior to MS02-039’s
version, thus reverting the fixes made in MS02-{039,043,056} and MS02-061, and reintroducing
the vulnerability [86]. Thus, a fully patched system was now vulnerable to several previously
fixed vulnerabilities. In addition, the precedence of patches was unclear, and users were unsure as
to whether the patch should be installed and then the hotfix or vice-versa. Microsoft re-released
the hotfix with a corrected version of ssnetlib.dll and re-released MS02-061 [84] to include the
hotfix on October 30. However, the worm only hit 3 months later, which should be enough time
for a significant number of machines to be patched. The lack of patching could have been be-
cause notification of the problems Microsoft repaired was not widely disseminated, leaving many
machines vulnerable. Particularly, given the wide inclusion of the MSDE in third-party appli-
cations, resulting in many non-security conscious user’s machines being infected. Russ Cooper,
editor of NTBugTraq only posted his understanding of the changes on January 28 after the worm
had hit [86].

On January 20 Microsoft released SQL Server Service Pack 3 (SP3) [87] which contained a
significant number of changes, including an up-to-date version of ssnetlib.dll. Given the large
number of changes, regression testing on Service Packs can often take significantly longer than
the testing required for smaller patches. Of the few who did deploy SP3, it was found that
there was a conflict with Best Software’s MAS 500 accounting package which required users
to reformat their machines. Currently Best Software only certifies their software to work with
patches up until MS04-021 [88], indicating the difficulty third-party vendors and consumers face
in avoiding conflicts from patches. Thus, when the worm hit five days later at 5:30 on a Saturday
morning (UTC) [81] many administrators either thought they were patched or were still testing
SP3. Of the many organisations crippled by the worm, Microsoft was one [89], indicating that

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 30

even they had difficulty managing the patch soup surrounding the worm.

It should be noted that it is unlikely that all patches will provide this many problems - Slammer is
a particularly bad example which allowed for a concise demonstration of some of the problems
related to patching. The fiasco surrounding Slammer demonstrates that patching is not always
straightforward. Often several versions of a patch exist and must be applied in a specific manner.
Sometimes those patches fail to remediate the vulnerability or expose the organisation to new
vulnerabilities (or re-open old ones). Also, patches are not guaranteed to be compatible with
every specific configuration and application, and a significant amount of testing is required before
they can be deployed.

2.4.6.2 GDI+ JPEG Vulnerability

On September 14 2004 Microsoft released MS04-028 [90] which described a vulnerability in
the way the GDI+ library processed JPEG files. An attacker could thus craft a malicious JPEG
file capable of executing code on a victim’s machine. This type of vulnerability is particularly
dangerous as many users and applications don’t treat pictures as potentially malicious and often
view or process them without confirmation. For example, Google’s Desktop Search application
automatically indexes images, which could trigger the vulnerability if a malicious JPEG is in-
dexed, without user interaction [91]. In addition, JPEG viewing is supported by a large number
of applications, creating a very large attack vector. Thus the risks were such that administrators
should have expedited deploying the patch.

Deploying the patch was, however, a non-trivial task. The GDI+ library (gdiplus.dll) can be run
side by side with other versions of the library [92]. The ubiquitous nature of JPEGs and the
resulting number of effected applications, both Microsoft and third-party, had their own versions
of gdiplus.dll installed. Thus, deploying the operating system patch alone was not sufficient to
mitigate the vulnerability. For example, even though the version of gdiplus.dll bundled with
Windows XP Service Pack 2 was not vulnerable, an installation of Microsoft Office 2003 would
make it vulnerable. To help with this, on October 12 Microsoft released the MS04-028 Enter-
prise Update Scanning Tool [90] which would scan for Microsoft applications which contained
a vulnerable version of gdiplus.dll and update it. A necessary task, considering that Microsoft’s
advisory on the issue [90] lists over 50 Microsoft applications which are vulnerable with links to
over 30 additional updates for individual software.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 31

Even if an administrator managed to find and patch all vulnerable Microsoft software, there were
still many third-party applications vulnerable. To help with this, a third-party tool was created
by Tom Liston of the Internet Storm Centre (ISC) [93] which scanned for potentially vulnerable
versions of the DLL. This tool only helped in discovering vulnerable applications though - a user
would still have to obvtain a specific patch from that application’s vendor.

Thus, to repair one vulnerability, an administrator would likely have to run two separate scanning
applications and deploy a significant number of patches, demonstrating how it is not always a
simple point-and-click case of one-vulnerability-one-patch. The complexity of software and its
inter-dependencies is carried through into patching.

2.5 Conclusion

This chapter serves to provide an examination of the current problems and trends contributing
to the difficulty of, and need for patch and vulnerability management. First, the life-cycle of
vulnerabilities was introduced and discussed. There has been much research into several aspects
of the vulnerability life-cycle, and the resulting life-cycle provides significantly more insight
into the process than previous life-cycles have assumed. The solid understanding of the way in
which vulnerabilities are introduced, disclosed and remediated provided a platform from which
the trends and issues surrounding this cycle were discussed. Several problems and trends in
vulnerabilities, malicious software and attacks were discussed. It was shown that:

• The number of discovered vulnerabilities is increasing every year.

• The number of attacks on those vulnerabilities and on still older unpatched vulnerabilities
is increasing.

• The release of a scripted exploit results in the largest increase in attack rate, and the time
between disclosure of a vulnerability and the release of a scripted exploit is decreasing.

Patching provides an effective method of finally remediating a vulnerability and can provide
a powerful defence against these trends. However, these trends impact the creation, release,
and deployment of patches. In addition, patches have several pitfalls of their own. These were
discussed, and it was shown that:

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 32

• Patches do not always behave as expected and can sometimes cause errors instead of fixing
them

• The increasing number of vulnerabilities is resulting in an increase in the number of
patches, which can often be overwhelming

• The decreasing vulnerability to exploit window results in a smaller window in which
patches need to be applied, however other problems with patches are resulting in a de-
ployment time frame which exceeds this window

• Patches are not always straightforward to deploy. Often the complexity of the underlying
software results in complicated installation procedures

• While vendors are improving, it is not always easy to obtain patches or notification of their
release.

These findings constitute a problem statement for which a patch management programme must
provide solutions. Understanding these problems and their causes allows a security professional
to design and implement policies, procedures, and technologies capable of responding to these
threats. The next chapter discusses how an organisation can do this by implementing an internal
policy for remediating vulnerabilities by patching. This discussion is then expanded to include
how a vendor can best respond to these threats in the chapter following that. Finally, in chapter
5, advice on the technical solutions available to improve patching and vulnerability mitigation is
discussed.

Chapter 3

Policy Solutions

3.1 Introduction

The previous chapter featured a discussion on the difficulties presented by managing vulnerabili-
ties while dealing with patches. This provides the basis from which this chapter will discuss how
best to respond to this situation.

As the vulnerability landscape shifts and the threats evolve, so too must patch management.
The trends described in Chapter 2 show how patching is an increasingly necessary and non-
trivial task, bringing its own problems with it. These trends showed the problems getting bigger,
while there is less time in which to solve them. At the start of this project we believed that
a software solution to the intricacies of patch management would be practical. Resclora [4],
for example, believes that if automatic patching were more widely deployed the costs incurred
due to intrusions would decrease. However, later in the same paragraph Resclora states “any
measures which improve the rate of patching [...] are likely to pay off.” We soon realised
that automated patching is not sufficient on its own to improve the rate of patching, due to
the complex and inherently fuzzy nature of patch management. Given the trends discussed in the
previous chapter, the speed at which patches can be deployed is one of the most important issues
a patch management solution must provide. While the burden of patching can be eased with
effective tools, it cannot be completely managed by them. Patch management is a risk trade-off.
It requires information from many sources (asset management, network monitoring, vulnerability
lists, patch lists), and integrates with existing processes (risk management, change management,

33

CHAPTER 3. POLICY SOLUTIONS 34

vulnerability management). A software tool may help to integrate these process and centralise the
information-gathering efforts, but in the end someone is required to evaluate this information and
make a decision. Chan [94] and Schneier [42] both believe that patch management is inherently
a technology problem, but that a sole focus on technology is insufficient. A quotation from the
ISO/IEC 17799 document states “The security that can be achieved through technical means
is limited, and should be supported by appropriate management and procedures.” [95] This
chapter follows this line of thought and focuses on the management and procedures that can be
implemented to ensure that patch management, and not just patch deployment, can effectively
occur. To this end, a comprehensive patch management policy is required. An organisation must
have a process for managing patches and gathering relevant information to make an accurate
decision. To quote MacLeod [96]:

“Any organisation implementing a well thought out patch management process
is on the right track to reducing its exposure and risk to published security vulnera-
bilities.”

This chapter details an organisational patch management policy framework. It describes a pro-
cess for effectively managing security patches within an organisation, with practical advice on
implementing such a policy.

3.2 Patch Management Policy

The rise in recent patch management research has resulted in a large number of best practice
policy documents being released. The problem with existing policies is that their focus is too
often only on a few elements of patch management. For example, one might focus on asset man-
agement and decision making, while another might focus on deploying patches and the software
necessary to do so. What is lacking is an intelligent synthesis of the available information into
one body of knowledge. The recommendations and steps enumerated below achieve this syn-
thesis, based on four such existing policies. The first is an early paper on patch management
by Chan entitled Essentials of Patch Management Policy and Practice [94]. The second is a
paper by Voldal [97] entitled A Practical Methodology for Implementing a Patch Management

Process. These two papers were the subject of an early iteration of this work [98]. The third pa-
per is NIST’s Patch and Vulnerability Management Program, special publication 800-40 version

CHAPTER 3. POLICY SOLUTIONS 35

2.0 [47], by far the most comprehensive of the documents. Lastly, Sun Microsystem’s Solaris

Patch Management: Recommended Strategy [3] contained valuable insight. These policies were
specifically chosen because of the depth and breadth of strategy and ideas they presented. NIST’s
work is highly regarded and used to maintain federal systems with strict requirements and reg-
ulatory conditions. Sun’s document represents the thoughts of a large vendor, one of the first
to start discussing patch management. Voldal’s paper is, at the time of writing, the only best
practices paper on implementing a patch management policy available from the SANS reading
room1, an excellent and well regarded resource for technology professionals. Chan’s paper is
both well regarded in its own right and published by an influential security organisation, @stake.
While these policies form the basis of the work to follow, the result is greater than the sum of
its parts. Other documents are referenced when necessary and this researcher’s own insights are
added. Specific technologies will not be discussed, as a process-oriented, technology agnostic
look at what needs to be done, whether automated or manual, seems more appropriate.

The main aim of this policy is, as defined by Chan “to create a consistently configured environ-
ment that is secure against known vulnerabilities in operating system and application software”
[94]. However, the end goal of this discussion is to provide a reference for an organisation
looking to design and implement their own patch management policy from the ground up, or to
enhance an existing policy. This discussion falls under the umbrella of best practice and provides
a utopian framework. As such, it is not necessary for every organisation to implement every step
- smaller organisations may combine several steps into one, for example. While insight into all
aspects of managing patches in available, this section is geared towards an organisation looking
to manage its computing assets, rather than the home user.

3.2.1 Patch and Vulnerability Group

A policy is of little use without stakeholders assigned the responsibility of managing and control-
ling its running and implementation. NIST recommends that a patch and vulnerability group be
established [47, pg VII]. The size, make-up and operation of this group can vary widely across
organisations. In smaller companies, and depending on budget, it may be the additional respon-
sibility of a systems administrator, whereas in larger companies it could be a cross-section of
relevant people from various departments, divisions or branches. The patch and vulnerability

1http://rr.sans.org/

CHAPTER 3. POLICY SOLUTIONS 36

group will be responsible for gathering information, implementing the policy, reporting to man-
agement and disseminating relevant information across the organisation. The group should be
differentiated from a general security group which, if it exists, should remain a separate group.
Patching is only as useful as the security of the organisation. There is no point expending a large
amount of effort on managing patches if all the machines and services have been left with poor
default configurations and no hardening effort has been expended.

It is recommended that the group be made up of system administrators, network administrators,
security staff and IT support staff. The wide impact of patch management and need for integra-
tion with other security and policy systems requires a diverse group. This group should have the
support of top management, and the authority to perform their functions [97]. The position of
the group within the organisational structure is specific to each organisation, although a group
cutting across many departments would provide a better understanding of the organisation’s con-
figuration and provide someone to drive patching in each department. The group could also have
subgroups operating in different parts of the company. Whatever the operation of the group, hav-
ing a centralised resource and a primary patch and vulnerability management group overseeing
the whole organisation’s patching is essential.

3.2.2 Security, Stability, Functionality Patches and Workarounds

The policy outlined will deal primarily with security patches and workarounds for security is-
sues. This is justiffied, given that the current difficulty in dealing with security patches is the
reason for implementing such a policy, as other types of patches can be handled by and fall
within normal maintenance and upgrade change control cycles. In more detail, security patches
need to be installed more often, at least once a month and often more regularly than that. Regular
maintenance cycles are usually designed to be run less often, usually annually. Security patches
are also more important, as the risks of not patching (suffering an intrusion) are far higher that
those faced by non-security patches. Additionally, the installation of security patches needs to
be expedited to deal with the unique risks security vulnerabilities introduce (see section 2.3).
The need for deployment speed is in contrast to the nature of the steps required during mainte-
nance such as adequate and thorough testing, which in the case of non-security patches does not
need to be rushed, but may require certain trade-offs when deploying security patches. Security
patches are also easier to not install, while other defences are getting better, without an effective
workaround it is likely that most security patches will need to be installed. Whereas non-security

CHAPTER 3. POLICY SOLUTIONS 37

patches can often be ignored if the problem has not manifested itself, there is no guarantee that
an attacker will not try to exploit any available vulnerability. Security workarounds fall into the
same category as security patches here - the changes introduced will still need to be tested and
the effectiveness and risks of the change must be looked examined in the same manner that a
security patch would. Both security workarounds and patches have more urgency attached to
their deployment. The only real difference is that the distribution methods of workarounds and
patches may sometimes differ. A breakdown of the different types of patches and remediation is
provided in table 3.1.

CHAPTER 3. POLICY SOLUTIONS 38

• Security Patches

– installed more frequently

– higher risks of not patching

– unique requirements

– fewer alternatives

– need to be deployed even for non-critical services

• Security Workarounds

– same requirements as a security patch

– usually easier to implement

• Stability Patches

– lower risks, threat already exists

– only required if corresponding stability problem exists

– is accommodated within normal maintenance cycles

• New Functionality/Features Patch

– low risk, threat does not exist

– only required if business needs dictate it

– is accommodated within normal upgrade cycles

Table 3.1: Types of Patch and Remediation Summary

3.2.3 Policy

This meta-policy framework contains eight steps, each of which should occur within the patch
management policy implemented by the organisation. Each step has a wide range of variables
that will need to be tweaked and set to reasonable standards within the organisation, and rele-
vant to the organisational and operational business context. These are considered best practice

CHAPTER 3. POLICY SOLUTIONS 39

guidelines for implementing a policy for managing security patches within an organisation. A
breakdown of each step is provided in table 3.2.

1. Information Gathering

• Host and asset inventory
• Patch and vulnerability research
• Exploit and threat research

2. Risk Assessment

• Patch and security threats
• Patch and security impact
• Assessment

3. Scheduling and Patching Strategy

• Define patch schedules
• Minimise change

4. Testing

• Mirror production environment
in test lab

• Check: patch authenticity, de-
pendencies and requirements,
whether vulnerability is remedi-
ated, conflicts with other appli-
cations

• Create repeatable steps to verify
patch installation

• Test back-out and undo steps

5. Planning and Change Management

• Proposed change
• Contingency and back-out plans
• Risk mitigation
• Patch monitoring and accep-

tance

6. Patch Deployment and Installation

• Automate where possible
• Secure patch distribution mech-

anism
• Utilise technologies to speed

patch distribution

7. Verification and Reporting

• Verify patches were installed to
all relevant machines

• Follow contingency plans if
patch is faulty

• Generate Metrics
• Report and document progress

8. Maintenance

• Analyse policy for improvement
• Train staff

Table 3.2: Patch Management Policy Summary

CHAPTER 3. POLICY SOLUTIONS 40

3.2.3.1 Information Gathering

The information gathering phase is a required input for making informed and accurate decisions
and providing proper risk analysis. This is an ongoing phase that will have inputs from many of
the other steps, and is the primary input into the risk management phase.

Asset & Host Management For a patch management process to be effective you need to know
which machines are utilising your organisation’s network, what software they are running, and
which previous patches (both security and functional) or modifications to the software have been
applied. This is necessary at the very least to establish which machines are affected by which
vulnerabilities and hence require patching. Further information is particularly useful in mak-
ing risk management decisions; the ability to anticipate the possible effects of a vulnerability
or patch is invaluable for minimising disruption and cost while maximising availability. This
process should be continuous rather than once-off, ensuring detection of new machines entering
the network. This requires a passive method which does not require software to be installed onto
machines, allowing the discovery of all new machines.

Typically the kind of information collected about each machine should include the system’s
hardware, operating system, application software, location (both physical and logical), the per-
son responsible for its administration and its function (end-user machine, print server etc.). For
both the operating system and application software (and possibly firmware) details of the current
software version, all applied updates and patches should be collected [97, 3]. While each policy
provides examples of various details that can be recorded, NIST’s provides the most comprehen-
sive list of possibly useful information [47, pg 2-4]. For servers, additional information, such as
the services they have been authorised to run, can be recorded [97].

Systems should then be grouped and assigned a criticality or priority level. Grouping should
be appropriate for the organisation and can be grouped along a variety of differentiators. While
NIST defines stringent criteria for grouping [99] American federal resources, the other policies
leave it entirely up to the organisation. Example groupings are:

• according to departments

• according to user base

CHAPTER 3. POLICY SOLUTIONS 41

• primary function

• managerial control.

These groups should then be given a priority rating. Voldal’s [97] policy document recommends
classifying these groups into one of three priority levels, although they can be further broken
down:

• Mission critical. Machines providing services critical to the business operation. e.g. Ama-
zon’s Web Servers

• Business critical. Machines providing important services that can tolerate short breaks in
service. e.g. E-mail servers or machines that aren’t used after hours

• Operational critical. Machines providing non-critical services. e.g print servers

Factors such as the importance of the server’s data and the consequences of downtime should be
used when determining priority levels. The ease with which the machine can be rebuilt in the
event of an intrusion is also a factor. In addition, the server’s vulnerability to attack should be
noted and used to modify it’s priority. For example, publicly accessible machines or high profile
targets should be given a higher priority [97, 47, pg 2-6]. It is also important to take note of
system interconnects, as a lower priority system may provide an attack route to a higher priority
one - thus, an internet-facing non-critical print server (a silly thing to do), while not mission
critical, should have a higher priority due to the increased risk of attack and possibility for further
compromise. This classification will be useful in determining the seriousness of a vulnerability,
guiding other actions such as whether or not a patch should be installed immediately. Without this
classification, an organisation may embark on costly and unnecessary patching and mitigation
projects, or cause further avoidable problems [47]. The information collected and determined
here will be a direct input into the risk management decisions described later. The broad groups
and the factors influencing priority are summarised in table 3.3.

CHAPTER 3. POLICY SOLUTIONS 42

Broad Priority Groups Description

Mission Critical Services and machines the organisation could not continue without.

Business Critical Important services tolerant of some short downtime

Operations Critical Useful machines where downtime would be an inconvenience

Differentiators

• Data sensitivity and criticality

• Consequences of downtime

• Difficulty of repair and restoration

• System exposure - accessibility and vulnerability to attack

• System’s interconnects - what access can this machine provide to other services if com-
promised

Table 3.3: Factors influencing priority rating

Vulnerability and Patch Research An understanding of the effects of a patch and the prob-
lem the patch is trying to address is required. In the case of security patches this requires an
understanding of the vulnerability in the software being run and how the patch remediates this.

If the trends described in sections 2.3 and 2.4 are taken into account, then it is clear that an
administrator needs to know of relevant security patches and vulnerabilities as soon as they are
released to minimise the effects of the shrinking time to exploit cycle. In addition, given the large
number of vulnerabilities and patches, some intelligent filtering is required to limit the list to
relevant patches only, with patches for software not present in the organisation weeded out. This
can be achieved with software which provides filtering based on criteria such as the vulnerability
criticality and affected products. While it is not a dichotomy, manual filtering is still preferable
to imperfect automatic filtering, and can be more easily managed via escalation procedures. The
vulnerability and patch notification should include which versions of the software are affected, a
criticality rating of the vulnerability’s seriousness, and what steps can be taken as workarounds
or stop-gap measures. There are two factors which contribute to the criticality. The first is
how easy it is to perform an exploit (if it requires obscure user interaction it would be less

CHAPTER 3. POLICY SOLUTIONS 43

critical that a vulnerability which can be exploited remotely without valid credentials). The
second is the impact of the vulnerability (if the vulnerability results in a simple DoS that can
be easily circumvented then it would be less critical than one which provides arbitrary code
execution in kernel space). In addition, the effectiveness, stability and maturity of a patch should
be determined. In particular any conflicts with other software or configurations should be noted,
with conflicts specific to the organisation made clear. Other indications include the number of
times previous versions of the patch have been recalled and for what reasons, any testing notes
provided by the vendor or other users, and any other special considerations the patch may require.
These are important when determining whether or not to deploy a patch under the risk assessment

step.

Notification can be minimally achieved by subscribing to the security notification and announce-
ment services of operating system and application vendors. In addition public disclosure lists
such as BugTraq2 or Full Disclosure3 can provide more comprehensive notification, though at
a poorer signal-to-noise ratio. Vulnerability databases, on the other hand, can provide targeted
vulnerability announcements and comprehensive vulnerability coverage including links to ex-
ploits, further discussion, and threat analysis. Mailing lists and discussion groups are also a
useful resource, particularly for monitoring the effectiveness of a patch or better understanding
the implications of a vulnerability. NIST provides a comprehensive discussion and listing of
notification services [47]. A summary of the research goals related to patches and vulnerabilities
can be found in table 3.4.

2http://www.securityfocus.com/archive/1
3http://lists.grok.org.uk/mailman/listinfo/full-disclosure

CHAPTER 3. POLICY SOLUTIONS 44

Vulnerability

1. Affected Software and Version

2. Vulnerability criticality/seriousness

(a) Ease of Exploitation

(b) Impact if Successfully Exploited

3. Workarounds and Stop-Gap measures

Patch

1. Software or Configuration Conflicts.

2. Number of, and Reason for, Patch Reissue

3. Vendor and End-User testing Notes

4. Special Considerations

Table 3.4: Patch and Vulnerability Detail Summary

Threat and Exploit Research While asset, patch and vulnerability notification helps provide
an overview of the organisation, exploit and threat notification can help provide an overview
of the security landscape. To use a crude analogy, if asset, vulnerability and patch notification
provide an understanding of the vehicle, then threat and exploit notification provide an under-
standing of the terrain. The threats from patches themselves, including non-security patches,
come from possible faults with the patch which should be determined while performing the
patch maturity and stability analysis described above.

Threat and exploit notification should provide knowledge of what tools (exploits) are available to
aid an attacker in exploiting the vulnerabilities, and which threats are currently known or likely
to allow an exploit. While knowledge of vulnerabilities, patches and workarounds is mandatory
for any patch management policy, knowledge of exploits and threats is not. However, this infor-
mation allows for better risk management decisions to be made, and in high risk situations can
be critical.

CHAPTER 3. POLICY SOLUTIONS 45

Unlike vulnerability and patch notification, threat and exploit notification is more difficult, with
few resources on the matter. Attackers are controlled by human whim and attack methods de-
velop fairly rapidly, and usually in secret. For example, NIST’s document was the only one to
discuss threat notification, but does so briefly without providing any direct threat notification
resources [47, pg 2-8]. Even if a comprehensive threat notification service existed, it would be
inherently crippled due to the difficulty in predicting threat actions, particularly human based
threats. This is not to say threat and exploit notification is non-existent. Quite the contrary -
there are several public exploit clearing houses, honeypot projects examining attacks to discover
attacker’s methods, internet telescopes analysing malicious traffic looking for attacks and, com-
mercial vendors (particularly anti-virus vendors) receiving feedback from their software installed
on customer’s machines. However, the security community’s knowledge of the exploits and at-
tack methods traded in underground communities is still limited, and it should be assumed that
an exploit exists for every vulnerability. This is especially true if a patch has been released; re-
verse engineering of patches can allow for rapid exploit creation [70]. Public exploit clearing
houses such as FrSIRT4, milw0rm5 and PacketStorm6 should also be monitored, and are partic-
ularly useful for exploits released after the announcement of the vulnerability or patch. Exploits
released with a vulnerability advisory are usually referenced in the original advisory or by vul-
nerability databases. Information about how effective and easy to use the exploit is should also
be noted, as sometimes crippled exploits are released (though these can be improved rapidly).

The public release of a scripted exploit has been shown to lead to an upsurge in attack activity[45]
(see figure 2.2). Knowing when this happens can change the parameters of the risk management
equation and indicate when patch deployment should be sped up. Monitoring services such as
DSHIELD’s Top 10 Targeted Ports and Port Reports can provide insight into the size of potential
threats, and also provide an early warning system of current or impending attacks. For example,
after a recent spike in activity on port 1025 led the Internet Storm Centre to issue a warning [100],
it was discovered that the increase was due to the release of the Dasher worm [101] exploiting the
Microsoft Distributed Transaction Coordinator service described in MS05-051 [102]. While the
reason for the increased attacks was only evident later, administrators could still have taken steps
to mitigate the potential for attack, or to speed up patching of the MS05-051 related patches. This
process should be integrated with the organisation’s own monitoring from a variety of relevant
local sources such as firewalls, web-servers, anti-virus and intrusion detection system logs, par-

4http://frsirt.org/FINDOUT
5http://milw0rm.com/
6http://packetstormsecurity.org/

CHAPTER 3. POLICY SOLUTIONS 46

ticularly if signatures exist with which organisations can detect known attacks. These signatures
can be anti-virus signatures with statistics gathered at the mail server or the intrusion detection
system’s logs, whichever are the most relevant sources. Work by research groups such as the
Internet Storm Centre (ISC), CERT and malware research laboratories (F-Secure, LURHQ etc.)
should also be monitored to discover the source of potential threats. While these generally only
provide an overview of threats exploiting on a mass scale, it is still useful to know whether most
attacks are coming from an automated worm, diverse group of script kiddies, or coordinated
criminal organisations. This should be augmented by an organisation’s own threat source anal-
ysis which, for large organisations, often includes competitors. With these tools and resources,
information such as available attack and exploit tools, the frequency and scale of observed at-
tacks, and the entities most likely to attempt an attack should be researched. Complacency due
to a lack of obvious mass attack activity is dangerous, as a quiet network does not preclude the
possibility of an intrusion. The risk from threats to high-profile and high-exposure targets such
as a large company’s web server should be considered higher. Unfortunately none of the four
policies provide any discussion on threat management beyond discovering available exploits. A
summary of the research goals related to threats and exploits is provided in table 3.5.

The information gathered at this stage should be compiled into useful forms (such as an in-
ternal advisory document) and distributed to relevant stakeholders. This distribution can vary
and should be determined by each organisation. A detailed version should be compiled for use
within the patch and vulnerability group, as this will be used throughout the rest of the process.
In addition, some action can be taken at this early pre-patch stage to reduce the risks of a threat
exploiting the vulnerability. Intrusion detection and anti-virus signatures can be updated to de-
tect and prevent possible attacks and exploits, this is discussed further under defence in-depth in
section 5.3.

CHAPTER 3. POLICY SOLUTIONS 47

Exploit

1. Availability (is it publicly available)

2. Effectiveness

3. Ease of Use

Threats

1. Observed Attacks Frequency and Scale

2. Entities Most Likely to Attempt an Attack

3. Profile of Vulnerable Machines

Table 3.5: Exploit and Threat Detail Summary

Automated tools can help when monitoring resources for information about vulnerabilities, patches,
threats and exploits, particularly XML feed aggregators. Many of the resources discussed pro-
vide their topical information in an XML feed for easy syndication. A feed aggregator can
monitor these feeds and provide alerts when there is new content. These feeds can even be used
to syndicate the content from a mailing list. Many of the resources discussed above such as
vulnerability databases and exploit clearing houses provide feeds updated with their latest con-
tent. While other resources such as the ISC and AV vendors provide a regularly updated web log
(blog) detailing and discussing new threats.

3.2.3.2 Risk Assessment

This step’s primary concern is deciding on the risks presented by not patching and comparing
these to the risk of applying a patch. Risk Management is a large field that could fill several theses
by itself, and this section does not aim to provide a complete description of how to implement a
risk management process. Rather, the focus is on the specific aspects of managing the risks of
patching. Minimally, this step should allow a patching policy to answer the question: “To patch
or not to patch?” However, given that in the face of a security threat the decision will usually
be to patch, a mature risk management policy should also allow better judgements about when

CHAPTER 3. POLICY SOLUTIONS 48

and to which systems a patch should be applied. Retrospective judgements should also allow for
improved risk mitigation in the long term.

This step provides a high level risk assesment approach, however any risk methodology can be
used in its stead. There is a serious lack of discussion on patching risk management within the
reference documents. While each document does discuss the decision of whether to patch or not,
it is sometimes inaccurate and often incomplete. For example, Chan [94] never mentions the
possibility of choosing in favour of not installing a patch or the factors which could lead to such
a decision. Voldal [97] touches briefly on risk management, but does not include it as a step in
the patch management policy. NIST [47] spends more time discussing the problem and provides
three relevant factors (the description is paraphrased):

1. Threat Level - public and high profile servers are more likely to be attacked.

2. Risk of Compromise - the likelihood of a compromise occurring.

3. Consequence of Compromise - the end result of a successful intrusion.

This is a strange list; they do not indicate that the threat level should be one of the primary inputs
into risk of compromise, whereas the consequence of compromise would not, they are either being
inconsistent or were not aware of specifics. In addition, NIST seems to be breaking from their
earlier definition of the word threat (see 1.2.1). Sun’s document provides the best discussion of
the four, but still only deals with a limited subset of issues, namely cost and availability which,
while necessary, are not a sufficient enumeration of possible consequences. The decrease in the
time available to patch, the increase in patches and the problems some patches have caused have
only recently highlighted the need for solid alternatives to applying a patch. This, coupled with
the high risks of not applying security patches may have lead to the insufficient attention to risk
management in the referenced policy documents. However, as patching and patch management
matures, vendors have increasingly been providing alternative workarounds. In addition, third-
party technologies such as anti-virus, firewall and intrusion detection systems have helped to
provide additional protections which can stave off patch installation until the patch is considered
stable and tested. In searching for further work into the to-patch-or-not trade-off, the patching
related risk management work by MacLeod [96] was found a useful reference and is discussed
further.

CHAPTER 3. POLICY SOLUTIONS 49

This discussion will revolve around three important factors which constitute risk; threat, vul-
nerability and, impact. These three factors are relatively independent of one another, making it
possible for one of the threat, vulnerability or impact levels to change without influencing the
other two factors directly7. This is in contrast to both the NIST and Sun policy. The terms threat
and vulnerability are used in a wider scope here than the rest of the document. Their use above
is specific to a security vulnerability and their related security threats. In this context the risk
of both applying and not applying a patch is determined, thus the threats and vulnerability of
applying and not applying a patch must be determined.

Risk Risk is defined by the equation: risk = threat× vulnerability × impact [96, 103] . in
more detail, risk is the probability of a threat successfully exploiting a vulnerability and bringing
about the ensuing consequences [33]. Thus, as McLeod [96] states “you need to experience a
level of threat to a vulnerability and a significant impact (Cost) for the vulnerability to present
a significant risk.” For example a high profile target (e.g Citibank) would always have high risk
levels because of both the increased probability that it will be attacked, and the increased proba-
bility that a successful attack will have a large impact. However, if it can reduce its vulnerability
surface it can reduce its risk. This definition appears targeted at discussing the risks of not apply-
ing a patch. If we discuss the risks of applying a patch, then concepts such as the threat-source
become less obvious. When the threat source is the actual patch, the vulnerability would be the
vulnerability to a system failure due to a faulty patch and the impact would be the resulting cost
and downtime. Thus, this definition of risk can cover both situations.

The following three factors are discussed below; patch and security threats, patch and security
vulnerability, and consequences and impact. These are inputs into the risk equation. Once they
have been determined, the risk of a decision can be determined and compared.

Patch and Security Threats Threat has already been defined in section 1.2.1. For the sake of
ease it is paraphrased as: an entity or adversary with the capabilities, intentions, and attack meth-
ods to exploit a vulnerability in an asset. In the context of security patches, this entity is usually
malicious and could be anything from a curious teenager, professional cracker, enemy govern-
ment or automated worm. At this point the threat research from step one should be compared

7Although there is some influence. For example the impact of intruding into a large financial organisation would
be large, which may contribute to the higher profile, and hence increased threat level of the organisation.

CHAPTER 3. POLICY SOLUTIONS 50

with information such as the public profile of the vulnerable systems. For example a vulnerabil-
ity in the FBI’s web servers is likely to attract a higher threat level. This will allow the threat
level to be gauged while the patch remains undeployed.

The threats to systems and assets when deploying a patch are different, and stem from possible
faults in the patch itself. These can manifest in a variety of ways, from affecting other systems
and software negatively, to re-introducing further problems or failing to perform the function for
which the patch was issued. This type of threat level is gauged from the research performed into
the maturity and stability of a patch during step one. For security patches the possible threats
faced by deploying a patch usually pale in significance relative to the alternative, namely an
intrusion. With proper testing, regular backups and careful monitoring, the threats from patches
can be discovered, planned for, and mitigated. An intrusion by an attacker on the other hand,
depending on skill and motivation, could be far more difficult to detect, cause far more damage
and be more difficult to repair. For example, if an attacker were to steal sensitive customer
account details, the option of a quick restore from backup is not available.

However, whether choosing to patch or not, the threats faced by not patching will always apply
as, even if the decision is made to patch, the organisation will still be vulnerable from the time
of public vulnerability disclosure until the patch is deployed internally. This will be discussed
further under the scheduling step (section 3.2.3.3).

Patch and Security Vulnerability The level of vulnerability of an organisation to a particu-
lar threat can be calculated as the seriousness of the vulnerability multiplied by the number of
vulnerable machines multiplied by the exposure of the vulnerable machines. The asset informa-
tion gathered in step one should allow every machine running the vulnerable service, software or
system to be determined. The seriousness of the vulnerability should not include the impacts of
successfully exploiting the vulnerability, but rather the level of access required for the vulnerabil-
ity to be exploited and the ease with which it can be exploited. These should be determined when
performing the vulnerability research discussed above. Not all systems are likely to be exploited,
as machines whose vulnerable service is publicly available are more vulnerable to attack than
services which are only internally available. However, internally available systems are still more
vulnerable than systems which disallow direct user access, because the vulnerability of internal
machines must be considered if a threat penetrates the organisation’s border. Thus, a grade of
vulnerability should be applied to each vulnerable machine. The grade would be tempered by

CHAPTER 3. POLICY SOLUTIONS 51

the ease of exploitation. The level of vulnerability of an organisation will then be a summation
of the vulnerability grade of the vulnerable machines.

The vulnerability of not applying a patch is different, as it is easier to calculate and easier to
minimise. As the patch is being installed by the organisation, the likelihood that the patch will
be installed to the relevant systems is near 100 percent. Thus, estimations of the machines’
exposure are unnecessary and the vulnerability will be based on the number of machines which
are to receive the patch. As mentioned above, there is a window of vulnerability before a patch
is deployed. This measurement can help to determine when the patch should be deployed and is
discussed further under the scheduling step.

Consequences & Impact Consequences are the result of a threat being successfully realised
against a vulnerability. These are the both the direct and indirect consequences. Direct conse-
quences include; cost of recovery, cleanup and re-deployment, downtime and loss of availability
etc., which are usually only marginally influenced by the specifics of the business. Indirect con-
sequences include; lost revenue, damaged reputation etc. and are business specific effects of
the direct consequences. Together these consequences impact on the realisation of a threat. For
example, lost availability on a mission critical server will have a larger impact than the same
consequence on a less important server.

Calculating consequence consists in working out what effects the realisation of a threat against
the vulnerability would have. The three most obvious consequences are the costs of a particular
action, the lost availability and the interruption to operations. It is difficult to determine the
consequences of an intrusion, as the extent to which the intruder can compromise vulnerable
machines cannot be predicted. For example, an intruder could compromise a machine and use the
access to snoop on an organisation’s activities, launch other attacks, or just disable the machine.
It is equally difficult to predict the behaviour of a faulty patch, which could disable a server,
re-open an old vulnerability or cause miscalculations in critical billing information. However,
more time is available to prevent and plan for patch failures. In either of these situations (if the
attack/fault is detected) the server will have to be rebuilt resulting in associated downtime and
varying costs to the organisation, both direct and indirect.

To avoid the complications of enumerating all possible consequences, the criticality and priority
of the vulnerable machines determined in step one should be used to gauge the impact. If the
vulnerable machines are of higher criticality then the impact will be higher. This allows the
impact to be usefully abstracted.

CHAPTER 3. POLICY SOLUTIONS 52

The Australian Department of Commerce’s Information Security Risk Management [6] docu-
ment recommends assigning an impact level to one of the measures described in table 3.6 [6].
This is a basic example, and any risk methodology in use at the organisation can be used to aug-
ment or replace this measurement. The impact levels are deliberately vague, as the specifics of
what differentiates a catastrophic from a major risk need to be specific to each organisation.

Qualitative Measure Description

Catastrophic Critical services and core business
operations would be threatened.

Major Effective service provision would be threatened
and require top management intervention.

Moderate Core services would function, but an
organisational review or procedure change
may occur.

Minor Some services would suffer, but
not fail. It could be dealt with internally.

Insignificant Routine operations and
maintenance could repair it.

Table 3.6: Impact Level [6]

Assessment Once the threat, vulnerability, and impact levels have been determined, a deci-
sion on the risk posed by an action can be taken. The Australian Department of Commerce’s
Information Security Risk Management [6] provides a good methodology, where the threat and
vulnerability level is used to determine the likelihood (see table 3.7 [6]) of the threats exploiting
the vulnerability. This is then used along with the impact level to determine the level of risk (see
table 3.8 [6]). Finally, this risk assessment does not stop here, but will be constantly modified
and used in the next steps.

CHAPTER 3. POLICY SOLUTIONS 53

Qualitative Measure Description

Nearly Certain The threat level and vulnerability level are
both high making this almost certain to occur.

Likely The threat and vulnerability level are
high, but it is not certain this will occur.

Moderate It is likely this event will occur,
but it probably won’t happen immediately.

Unlikely It is doubtful this event will occur,
but there is still a possibility.

Rare The threat and vulnerability levels are so low
this would only occur in an exceptional circum-
stance.

Table 3.7: Likelihood [6]

Impact
Likelihood Insignificant Minor Moderate Major Catastrophic

Nearly Certain H H E E E

Likely M H H E E

Moderate L M H E E

Unlikely L L M H E

Rare L L M H H
E = Extreme Risk
H = High Risk
M = Moderate Risk
L = Low Risk

Table 3.8: Risk Level [6]

3.2.3.3 Scheduling and Patching Strategy

Too often in the past patching was done in an ad-hoc, ’as the patch arrived’ manner. Vendor
release policies have helped this somewhat (see section 4.3). To ensure that patching is done reg-
ularly in a controlled and predictable manner a patch schedule should be created. This schedule

CHAPTER 3. POLICY SOLUTIONS 54

will primarily be informed by the initial risk assessments performed in the previous step. Chan
[94] recommends the creation of two patch cycles.

• Regular, defined and predictable cycle for non-critical standard patches. Usually with
time-based triggers.

• Expedited, when necessary cycle for critical patches. Usually with event-based triggers.

The first is a regular cycle whose purpose is to ensure the application of normal, non-critical,
standard patches and updates, these are often non-security updates, updates for which an effec-
tive workaround/mitigation exists, or an update for a vulnerability the organisation’s security
infrastructure already mitigates. The cycle can be either time- or event-based e.g. monthly or
after the release of several such patches. This can be split to form a separate longer cycle for
large cumulative updates such as service packs or operating system upgrades. Given the large
number of changes such upgrades introduce, they usually require more testing and integration,
e.g. training support staff, upgrading related applications, integrating software. Thus, a longer,
more carefully planned cycle can be split from the first. The second cycle’s purpose is to ensure
the installation of critical security patches and updates, and should be completed whenever a
critical patch is announced.

An initial assessment of the patch is required to determine which of the two cycles a patch
should be placed in. In addition, within each of these cycles a hierarchy of patch priority should
be developed to determine what order patches and machines are worked on. These decisions
will primarily be informed by the risk level associated with a patch and it’s related vulnerability.
When determining when to patch, there are two conflicting risks, as shown above. The first is
the risk of applying a patch, the second the risk of compromise (or the risk of not applying a
patch). In their seminal work on the subject Beattie et al. [2] describe how the optimal time
to patch can be solved. Over time the risk from compromise will increase, as exploit and attack
tools are published and improved, while becoming more widely known, and the risk from a patch
will decrease as bugs are reported and the vendor re-issues the patch or provides advice. Thus, a
hypothetical graph of the risks will look like figure 3.1 [2], where the optimal time to patch is at
the intersection of the two risk curves. Beattie et al. provide research analysing a cross-section of
patches and vulnerabilities and showed that the optimal time to patch was at either ten or thirty

days after the release of a patch. This was based on comparing the number of times patches
were re-released due to problems to the number of intrusions. The risk drops off at the ten day

CHAPTER 3. POLICY SOLUTIONS 55

Figure 3.1: Hypothetical graph of the risk of compromise and patching [2].

and thirty day markers. TheyBeattie et al. also provided their methodology, encouraging further
research on the optimal patch application time of specific vendors. Ideally, solving the optimal
time to patch for the specific subset of software vendors used within each organisation would
provide an optimised estimate, and could be shared with the wider community. It is important to
note that if an organisation has sufficient resources to thoroughly test a patch before deployment,
then the risks a patch presents to that organisation can be reduced at a sharper rate, speeding
up patch deployment and reducing the risks posed by a compromise. The ten and thirty day
deployment suggestion is primarily for smaller organisations with limited resources that cannot
afford to deploy a large patch testing regime. The specific risks, and risk thresholds should be
worked out in the previous risk assessment step.

Sun Microsystem’s document Solaris Patch Management: Recommended Strategy [3] recom-
mends a strategy not mentioned in other documentation: minimising change. The argument
supplied for this supports the risk assessment conducted above, and should be taken into consid-
eration when crafting a patch schedule. The argument claims that “overall downtime, planned
and unplanned combined, goes up with more frequent application of patches. [3] ” This theory
is demonstrated in figure 3.2 [3]. Up-time increases at a constant rate over time, which in an
ideal world (with no downtime out) looks like a straight light from the point of origin. However,
if there is an outage up-time stops increasing and a plateau is reached. The current patching

CHAPTER 3. POLICY SOLUTIONS 56

Figure 3.2: Patch application and its impact on Availability [3]

strategy, ’apply every patch,’ thus looks like a regular set of plateaus that results in the lowest
total up-time. The other extreme is to apply patches only after a failure such as an intrusion.
A failure would result in unplanned downtime which would be longer than planned downtime,
due to the extra time required for problem diagnosis, to divert resources, and due to being less
prepared. Once the failure resulting in unplanned downtime is corrected, an additional planned
downtime is necessary to apply the fixes that could have prevented the intrusion. This is repre-
sented by the reactive line. It is interesting to note that it is possible for reactive patching to result
in less downtime than applying every patch. This graph does not include downtime due to faulty
patches, which would presumably reduce the up-time of the current strategy even more. How-
ever, the reactive strategy isn’t acceptable, and intrusion can have far more negative results that
just downtime. Therefore, a strategic patching schedule should seek to optimise between these
two extremes. By only applying necessary patches, the planned downtime from patch installa-
tion, downtime from patch failure, and downtime from an intrusion can be minimised. Given
that downtime also has a cost element, strategic patching can also help to reduce the costs of
patching.

Minimising change recognises that not every patch that is released is applicable to an organisa-
tion. There are two primary considerations to minimise change [3].

1. Address only known issues for which no acceptable workaround exists.

CHAPTER 3. POLICY SOLUTIONS 57

The patch and vulnerability group should analyse the patch and identify whether the or-
ganisation suffers from the problem it purportedly fixes. If it does, then research into
alternative ’cheaper’ methods of remediating the problem should be conducted.

2. Keep current according to business needs.

The version of software used should be the lowest, still maintained, version appropriate to
the specifics of an organisation, unless new software is being deployed. In addition, new
features should only be deployed if necessary to business needs.

For example if there is a vulnerability in a mail client that only affects people using the IMAP
mail protocol, then users of the software who do not use IMAP (and have it disabled) but rather
POP3 can ignore the patch. Alternatively, if an acceptable workaround such as disabling a non-
critical service exists, it can be used instead of the patch. This will ensure that the software
is kept as up to date as your organisation requires, instead of as up to date as the vendor has
allowed. An intelligent choice of which patches should be installed can reduce the number of
patches installed. However, it is important to ensure patches are distributed to all vulnerable
machines [47, pg 2-11]. Minimising change by limiting distribution to high risk groups only
is an ineffective measure due to the nature of an intrusion, where often low criticality and low
risk machines are compromised first. Thus, providing an attacker with internal access to the
organisation [96] from which further attacks attempting to achieve a higher level of compromise
can be performed.

A patch schedule should be created from this information. The triggers and timing of this sched-
ule should be specific to the organisation. The optimal time to patch for the software used within
the organisation should be determined and used to determine the lengths of, or triggers for, the
schedules. In addition a strategy for deciding into which schedule a patch should be placed
should be determined. This will take as its primary input the risk assessment from the previous
step. This should be used first to decide into which cycle a patch should be placed, and second
to determine when a trigger has been reached.

3.2.3.4 Testing

Testing is a critical part of any patch management process. The primary goal of testing is to
reduce the threat of faulty patches discussed in the risk management section. Given the amount

CHAPTER 3. POLICY SOLUTIONS 58

of regression testing that can be required, this goal can be the primary delay in patch deployment,
and stands in competition with the need for rapid patch deployment in the face of a shrinking
exploit and patch window (discussed in section 2.3). Worse still, the hasty application of a faulty
patch can cause a wide range of damage. For example it could fail to remediate the vulnera-
bility, undo fixes from past patches, introduce new vulnerabilities, impair the functioning of the
software being patched, or impair the functioning of other software. This could be either mali-
cious or accidental. Testing is especially important if an automated patch deployment solution
will be used. A common worry about automatic patching is that faulty patches will be deployed
automatically [40]. This is usually due to inadequate patch testing, both from the vendor and
the organisation. The deployment of a patch to production machines should not be considered
testing, whether manual or automatic. To minimise these risks of patching it is critical that an
organisation thoroughly test a patch before it is deployed. Testing is primarily a technical step to
determine whether the patch and resulting updated software will actually correct the vulnerabil-
ity, and that the affected components continue to function correctly. Particularly in the context
of your organisation’s specific configuration. However, additional information such as the likely
disruption to business during patch deployment and any changes to business processes can be
observed and documented.

The steps performed when testing should be determined within the organisation and documented
for each relevant system and piece of software. These checks can vary from a simple check that
the patch installed and the system rebooted correctly, to a series of automated scripts checking
the critical functionality of the officially supported software. Standardised configurations set to a
common baseline should be created. This helps to reduce the number of different configurations
which need to be managed, as it does in the production environment. A document for each
baseline should be created with the expected behaviour of the system described and verifiable
tests provided to check this [104].

Ideally, the testing should be done in an environment which exactly mirrors the production en-
vironment, however this is very often not possible. At a minimum, the test environment should
represent all mission critical servers [94]. It is not always possible to re-create the exact pro-
duction environment, particularly in organisations with limited budgets. Standardised baselines
allow the configuration of machines to be more easily defined and re-created. With standardised
baselines, a testing environment would need only one example of each configuration. Virtual
machine technology can be used to reduce costs and re-create particular environments. Several
virtual machines can be run on one actual machine, creating a ’lab-in-a-box’ which can dra-

CHAPTER 3. POLICY SOLUTIONS 59

matically reduce the hardware costs of setting up a test lab, and improving ease of maintenance
[97]. The downside is that specific physical hardware interactions can be difficult to model with
a virtual machine, particularly for hardware-specific software such as drivers. Three excellent
products which can be used here are VMWare [105], Xen [106] and Microsoft Virtual PC [107]
and Virtual Server [108]. After testing patches in the lab, they can be deployed in a waterfall
style roll-out, where patches are deployed to the lowest criticality, easily recoverable machines
first, then continue up the criticality hierarchy. This can help to discover any bugs missed in the
lab while helping to minimise risk, but may still result in some unwanted downtime and should
not be used as the primary testing method.

While the tests will mostly be organisation specific, some tests are common to all patches. Some
patches rely on other patches or supersede previous patches. All required patches and their de-
pendencies should be tested and deployed in the correct order. For example: Oracle’s AD Merge

Patch [109] can merge several patches into one install path and can help to reduce the complexity
of installing multiple patches; Sun and other vendors accumulate their patches into one package
before hand [3]; while Debian [73] and Microsoft [110] build dependency checking into their
deployment tools. In addition, vendors often release cumulative or roll-up patches. Most ven-
dors provide a method for checking the authenticity of a patch. The most basic versions involve
checking a hash8 of the file with a fingerprint available at the vendors website. More advanced
authentication mechanisms involve an automated check for an authoritative digital signature.
This authenticity should be re-checked as the patch is moved around the organisation, to prevent
tampering [94]. Some organisations may choose to put their own signature on the patch. After
verifying the authenticity, the patch should be scanned for any malware by an up-to-date anti-
virus software package. If possible, the patched software should also be scanned in case the patch
contained malware that only became obvious once deployed - one such example can be found in
Ken Thompson’s Reflections on Trusting Trust [111]. None of these methods are guaranteed to
protect against all malicious patches - for example, if the creator of the patch had an, as yet un-
seen, trojan stowed away in their final patch release, it would appear signed, and most anti-virus
packages would not detect the trojan [47]. After deploying the patch to the test environment, it
must be ensured that the vulnerability has been correctly patched and that no new vulnerabilities
have been re-opened. This is mostly easily, but not completely, checked by a vulnerability scan.
Repeatable tests that can be used to ensure that a patch has been correctly installed should be
devised and documented. Most often the verification of a successful deployment is provided for

8Given the recent cryptanalysis attacks against MD5 and SHA-1, verifying with one of these hashes is not
sufficient. Other hashing algorithms such as SHA-256 should be employed.

CHAPTER 3. POLICY SOLUTIONS 60

by automated patching software. However, the range of applications and functions which require
patches through their life-cycle mean that this is not always straightforward. Some vendors pro-
vide information on how to verify that the patch was installed by providing repeatable checks
that can be performed. These checks can include looking at file versions and hashes, checking
configuration settings, observing different behaviour etc. and will have to be determined for each
patch. Some patches also provide a method to undo the changes in the event that a patch needs
to be rolled-back [47]. Debian, Red Hat, Solaris and Microsoft all provide some patches which
can be easily removed, but not all patches have this functionality, and without exact copies of the
previous files they often revert to a default state which is not always desirable. These should be
tested and appropriate backups taken to restore the system if a patch needs to be removed and
the undo functionality does not work or is not present.

Given the need for an expedited testing process, several methods can be employed. On a procedu-
ral level, noting the interactions already tested by the vendor can save time while subscribing to
the vendors patch notification service can provide early warnings and reduce redundant checks.
Community lists should also be monitored. For example the patch management mailing list9 of-
ten has discussions on faulty patches and their solutions. If possible, automated tests for the core
business process should be implemented, for example comparing the accounting information
produced from the same input sent to two versions of the software, one patched the other un-
patched, can catch subtle data corruption bugs and can be trivially implemented. Performing as
much of the testing overhead as possible before the announcement of a patch will help to reduce
the time taken when the patch is released. For example, having a regular automated back-up sys-
tem in place can reduce the time required to make back-ups before a patch is deployed, allowing
removing the patch to be tested more rapidly. Lastly, checking the dependencies of the patched
software can allow for certain tests to be prioritised over others. For example, if a patch updates
a dynamic library then all programs depending on that library should be tested. As a further time
saver, scoping the testing to the changed functions can result in fewer tests without significant
danger. For example, if only one cryptographic algorithm is patched in a dynamic library, then
testing all of the algorithms is somewhat less useful. These tests can also help in determining
which services should be checked for new or old vulnerabilities that were inadvertently created
by the patch. However, scoping the tests too much can result in an incomplete study and missed
bugs.

Due to the difficulty in working out program dependencies and preventing too narrow a scope,

9http://patchmanagement.org/

CHAPTER 3. POLICY SOLUTIONS 61

some tools have been developed in an attempt to partly automate this procedure. The assumption
is that if the patch can be analysed for all possible dependencies, then the scope can be narrowed
to only testing dependent programs with no danger. In addition, reverse walking the dependency
tree allows fro better troubleshooting of faults. Two such tools attempt to do just this, Microsoft’s
Strider product [112] or Solaris’ sowhat [113].

If there are several possible methods of remediating a vulnerability, then the assessments must
be carried out on each one. The risk management step provides the tools which can ease making
a decision between the competing threat from patches and from attackers. Thus, any additional
information as to the threats a patch poses to the organisation must be used as an additional input
into the ongoing risk assessment. At this point an assessment as to whether the risks are such
that the patch should or should not be deployed must be made. If the decision is to not deploy
the patch then alternative layers of defence must be tweaked, this is discussed further in section
5.3.

3.2.3.5 Planning & Change Management

Much of the purpose of a patch management policy is to manage the change introduced by a
patch. As such, integration with existing change management structures is critical to its success
[94]. As with risk management, change management is a large field that will not be discussed
in detail here. The primary goal of change management will be to provide documented proce-
dures for various aspects of the patch application to keep changes consistent and avoid surprises.
Having a clear change management policy will help when troubleshooting problems, as specific
changes which caused the problem can be pinpointed, relevant personnel summoned, and future
problems avoided. During this step a plan for how the patch will be deployed and the changes
logged will be developed. It should seek to minimise the risks of patching by fully utilising
the advanced warning afforded by knowing when a patch will be deployed. The benefit of ad-
vanced warning is that contingency and back-out plans can be developed. The end result should
be a documented process specifying explicit steps when planning for and applying change and
ensuring accountability for applying changes.

Such a policy requires four important functions [94]:

1. Proposed Change

CHAPTER 3. POLICY SOLUTIONS 62

2. Contingency and back-out plans

3. Risk mitigation

4. Patch monitoring and acceptance

The proposed changes, namely the patch or workaround that will be deployed, should be doc-
umented. The details of what change is introduced would have been discovered during testing.
These changes should then be approved and signed off by the people responsible for the systems
which will be modified. This will help to provide a clear authenticated audit trail of changes in-
troduced. To prevent inconsistent deployment, access controls should be used to disallow users
or other programs installing their own patches, unless it is preferable to do so. To enforce this
consistency policy, guidelines should be drawn up as to what level of drift from the baseline is
acceptable, and how users should behave and respond to patch deployment notifications. These
guidelines should be coupled with regular checks to ensure that they are effective. These changes
must be distributed to relevant stakeholders, which can be achieved with an organisational patch
and remediation database. The advantage of this is that it provides a central resource than can
be referenced at a later stage, when information on the patching process is required, such as
when creating new baselines or calculating metrics. Change management allows dependencies
to be created between groups and systems, allowing a change in one group to trigger an alert
to another group that might find the change relevant. This is important when maintaining oper-
ational baselines, as build images and documentation must be updated to include the deployed
patch. To quote Chan [94] “These modifications are most ideally and suitably handled via an
enterprise-wide change management system.”

Contingency and back-out plans should be prepared for a worst case scenario. Documentation
describing what is being installed, its intended outcome and how to remove it should be drawn
up. The procedures to restore system state from back-ups created during the testing step should
be documented and made repeatable. Ideally these should be worked into a regular schedule that
doesn’t wait for a patch release, to save time during deployment. The inventory of system assets
drawn up in step one can be used to inform the direct end-users and notify or request help from
the people marked as responsible for the relevant assets. This will allow personnel to be notified
and on standby in the event of a failure, with support staff notified of the upgrade and briefed on
the relevant information with which to respond.

Risk mitigation requires performing the roll-out in a way that will limit possible complications
in an attempt to reduce the likelihood of a threat being realised. To achieve this, both the tech-

CHAPTER 3. POLICY SOLUTIONS 63

nical and procedural aspects of deploying the patch should be analysed for possible failure. Any
failure points should then either be removed, mitigated or minimised. On a technical level this
may require that the infrastructure can handle the patch deployment. For example, ensuring that
the file server distributing the patch has enough bandwidth, and if not, staggering the times at
which machines update or providing more bandwidth, are possible solutions that should be im-
plemented before a deployment. At a procedural level this requires ensuring that the necessary
non-technical components for both the changes and contingency plan are available (for exam-
ple, ensuring relevant personnel are available or staggering updates to ensure that personnel are
not swamped with troubleshooting). This is often a difficult task to perform, as it is not always
easy to see the pitfalls. Previous experiences with faulty patch installations should always be
documented, and can provide a useful resource when looking for possible points of failure. A
common component of risk mitigation will include details of patching machines that the auto-
mated deployment methods failed or are unable to patch, such as machines that were powered
off, mobile devices that were outside the organisation network, and unsupported software and
hardware devices (e.g. router firmware). These must be planned for. Common solutions include:

• Using pull-based patching, where the device pulls its own patches as soon as it can

• Quarantining unpatched devices in a limited access network sub-net

• Enlisting the help of users

• Plain manual patching

A deployment schedule should be drawn up, detailing which systems and groups of systems will
be patched and in what order, and taking into account the business needs and risks associated
with each group.

Plans relating to the monitoring and acceptance of patches detail which criteria must be met
for the patch to be considered successful and how these criteria will be monitored. This will
provide a specific and measurable milestone for the completion of the upgrade [94]. It is naive to
think that all patches will install smoothly and working in emergency mode until all patches are
installed can be a waste of resources, and divert attention from more important vulnerabilities
and threats. This should provide specific and measurable criteria based on the level of risk the
organisation is facing and find acceptable. In addition, these points can be used when developing
patching metrics discussed below.

CHAPTER 3. POLICY SOLUTIONS 64

3.2.3.6 Deployment, Installation and Remediation

Many system administrators have the most experience with this stage of the process [94]. Often
when referring to patch management or patching, many are actually referring to the physical
act of installation or deployment of patches. Due to the focus on deployment this is one of the
better understood steps, and the area into which the most work has been performed, particularly
into automated patch deployment tools. It is important to view this step as part of a larger patch
management process, and it is the snag many patch management products fail to realise.

This step is primarily concerned with creating a method for effectively deploying patches with
minimal manual intervention. Unattended automated deployment is not always desirable how-
ever, and it may be more appropriate to patch mission critical systems manually, during off-
peak hours [97]. Automated solutions do help aspects such as reducing costs of large-scale
deployments and automating repetitive stages of the patch management process, providing both
a benefit to speed and reduced chance of human error [3]. More on current patch management
solutions can be found in section 5.2 with further discussion of the technical aspects of an auto-
mated solutions discussed in section 5.2.1.6. However, not every piece of software and device
will be supported by the automatic deployment methods used. The plans drafted in the previous
change management step (see section 3.2.3.5) should be followed and should handle predictable
problems. This control will help to prevent drift from the consistency correct change manage-
ment procedures seek to create. The patches should be deployed in a controlled and predictable
manner that limits disruption to the business’ processes.

Several technologies can be used to improve the speed and accuracy of patch deployment. Com-
pression can help to speed the transfer of the patches to end-user machines. Distributing patches
as binary differentials can dramatically reduce patch size [114]. Encryption can help to reduce the
chance of tampering and hide the often sensitive information, such as details of operating system,
hardware, installed applications and patch levels, being sent between client and server machines.
Digital signatures, particularly if they have already been implemented within an organisation-
wide public key infrastructure, are a mostly mandatory method of preventing tampering with
patches and ensuring only approved patches are installed. Unfortunately, many of these fea-
tures need to be implemented by vendors, and patch deployment tools are not always developed
in-house. These technical features are discussed further in section 5.2.1.6.

It is important to remember that, since patch deployment tools usually install software at a higher
privilege level to many machines in the organisation, the severity of a compromise of the patch

CHAPTER 3. POLICY SOLUTIONS 65

deployment tool would be high, allowing it to be used as a malware infection vector. Unfortu-
nately, this security implication of correcting security vulnerabilities is sometimes ignored. For
example, when Microsoft released the MS05-038 patch [115] with corrupted digital signatures,
neither Microsoft nor end-users mentioned the possibility that this was the same symptom a
compromised patch would demonstrate [116]. Thus, the security of the patches and patch dis-
tribution mechanism should not just be a function of testing, but rather a constant pressure, with
every stage of the patch’s life-cycle authorised and authenticated, from first obtaining it from the
vendor, right through to its successful deployment [94].

In a larger organisation, multiple patch deployment methods may be used, as determined by
relevant business units. In this case, it is appropriate for the patch and vulnerability group to
provide the relevant information to the various parties. Once again, the organisational patch and
remediation database mentioned earlier can provide this. This can also be useful in allowing
end-users to apply their own patches for organisations which give the user more control over
their desktop machines, such as universities or other research institutions.

3.2.3.7 Verification & Reporting

Not every patch deployment will be successful. Some machines will be unavailable during the
roll-out while others will fail mysteriously. The goal of this step is to verify the successful
installation of the patch, and discover which patches failed to deploy to which machines, and
why.

The deployment plans drawn up will have detailed which machines and groups of machines the
patch should have been deployed to. In addition, during testing, specific repeatable tests which
can be used to verify the successful installation of the patch should have been provided. The
documentation and resources provided by the asset and host inventory created during informa-
tion gathering, the patch verification steps drawn up in testing, and the deployment plans created
in the change management step, should provide an easier way to verify that the machines and
services to which patches were deployed had the patches successfully installed. It is interesting
to note that Chan [94] argues that this step should contain the asset and host management inven-
torying, which the present policy recommends performing during information gathering. Given
that system discovery is critical for more security aspects, it is believed to be more appropriately
placed where it is currently.

CHAPTER 3. POLICY SOLUTIONS 66

Verification that the patch has been installed and that the vulnerability has, in fact, been reme-
diated needs to be conducted. It should have been ascertained during testing whether the patch
does remediate the vulnerability, thus verifying that it can be minimised at this point. However,
if the vulnerability has been remediated then it can be assumed that the patch was successfully
installed (but not vice-versa). Thus, if the choice is between verifying the patch install or ver-
ifying that the vulnerability was remediated, the latter should be opted for. Verification can be
either direct or indirect. Direct methods would include actions that require local machine ac-
cess10, for example checking patch logs and file hashes or configuration options (e.g. registry
settings), indirect methods are performed remotely and would include methods such as observ-
ing port connection strings or remote vulnerability scanning. Some vulnerability testing should
occur by performing a vulnerability scan on a representative sample of patched machines. More
on vulnerability scanners can be found in section 5.2. Vulnerability scans sometimes include
actual exploit techniques and may cause harm to the system, so the specifics of the scan should
be noted to prevent a harmful scan [47, pg 2-14] from wreaking the kind of damage the patch was
supposed to prevent. In the time since the initial creation of the host inventory, new machines
may have become active on the network or mobile devices may have returned. It is important to
include them in the patch deployment. A good automated asset inventory system should update
the inventory as the new machines become active, but this does not necessarily mean they have
had patches deployed.

At this point some problems due to a fault in the patch should become evident. These need to be
identified and remediated as soon as possible. The risk mitigation steps put together during the
change management process could help to minimise the impact, by ensuring that problems are
planned for and the relevant staff are ready to respond with the contingency plans. Staff should
be aware that a change has been implemented and cautioned to be on the lookout for subtle
inconsistencies, such as minor miscalculations, as a small fault in the patch, if unnoticed, could
potentially be very harmful. At this point a decision should be made as to whether the changes
should be rolled-back. This decision should be made if the patch is causing more problems than
the related exploit, or if there is more chance of a bigger problem (higher risk) manifesting itself
than an intrusion presents. If the previous steps have been conducted thoroughly, it is rare that
this decision should be made. If it is, as in chess, it should be ensured that every system which
has the patch defence removed is covered by an alternate defence.

10Local access is not the same as physical access, but it has similar requirements, usually valid user credentials.
However, local methods can often be performed remotely. Physical access can provide direct manipulation of the
machine allowing root or administrator access.

CHAPTER 3. POLICY SOLUTIONS 67

This phase should also generate reports, record relevant statistics and document any problems
that occurred, to prevent repeat mistakes. These reports should be summarised and regularly
forwarded to upper-management to ensure they know the patch management process is func-
tioning correctly [97]. These reports can also be used to tweak other steps, particularly the risk
assessment step, for future patches. To properly report on how well the implemented patch man-
agement process is meeting its targets, the targets need to be defined using metrics. To quote
MacLeod [96]:

Without having available metrics to measure specific aspects of your patch man-
agement programme, it is difficult to establish or set appropriate patching targets
and objectives. [Which] makes it impossible to measure deviation from targets and
[define] acceptable tolerance limits. Metrics help to demonstrate that your patch-
ing efforts are effective and offer the security management team solid information
that allow them to communicate security posture to the business stakeholders in a
meaningful way.

The metrics measured here are not limited to the most recently deployed patch - they should also
be used to provide a summary for relevant groupings of patches and machines. These grouping
can be time-based or be made up of a relevant basket of patches. Some example groupings are; all
patches across all machines, all critical patches deployed to mission critical servers, all patches
deployed in the last year to desktop machines, all critical patches pending during the last three
successful intrusions. By measuring the relevant statistics, it is possible to generate new reports
rapidly. Very little extra work is necessary, as the required information is gathered in this and
other steps of the policy. Automated tools will help to gather these data and easily scope them to
the group desired.

A particularly useful metric is that of patch coverage, which is the percentage of machines that
have a patch or group of patches installed. The data required for its calculation are:

• Nm - Number of machines in grouping

• Np - Number of patches being analysed

• Npi - Number of the specified patches installed

• Npu - Number of the specified patches not installed (unpatched machines)

CHAPTER 3. POLICY SOLUTIONS 68

The equation then required to calculate patch coverage of an organisation (PC) is a simple
percentage [96] listed in equation 3.1:

PC = (Npi ÷ (Nm×Np))× 100 (3.1)

For accuracy purposes, the number of patches analysed multiplied by the number of machines
in the grouping should be the same as the addition of the number of patched machines and
unpatched machines:

Np×Nm = Npi + Npu

This is important to ensure that the measured result (Npi + Npu) result is consistent with the
predetermined result (Np×Nm) and hence the patch coverage result is accurate for the grouping.
For example if the metric is calculating the patch coverage of mobile devices, and only half the
mobile devices are included, the metric cannot be said to be accurate. This is less important
for groups of machines that are stable on the network. The opposite of patch coverage is the
organisation’s vulnerability coverage (V C) which provides an indication of how vulnerable an
organisation is:

V C = 100− PC

For example, if the patch coverage for all critical patches on mission critical servers were to be
calculated, Nm would be the number of critical servers in the group (e.g. 100), Np would be the
number of critical patches deployed so far (e.g 10), Npi would be the number of machines found
to have the patch successfully installed during verification (e.g. 800) and Npu would be the
number of unpatched machines discovered during verification (e.g. 200). Therefore, the result
is:

= (800
(10×1000)

)× 100

= (800
1000

)× 100

= 0.8× 100

CHAPTER 3. POLICY SOLUTIONS 69

= 80% patch coverage

Scoping these metrics by time can also be useful. Providing common time intervals, such as
5 or 10 day intervals, will allow the patch coverage at the same interval to be compared across
patches. Calculating patch coverage when events in the vulnerability life-cycle occur can be used
as input to risk management decisions or to prove the effectiveness of the patch schedule, e.g.
when the first exploit was released the total patch coverage was at 75%.

1. Time at which exploit code was publicly available for the vulnerability

2. Time at which an automated attack was released (worm)

3. Set patch coverage targets at a fixed time interval after the release of the patch.

A picture of the patch coverage at each point can be measured. Earlier it was shown that the
release of exploit code is the primary trigger for an increase in attacks, so knowing the patch
coverage at that point, and when a rapidly spreading worm is released, is a useful metric. The
time at which the vulnerability was announced and the patch released should be included to
provide a more accurate picture of the metric. For example, if the patch is released after the
exploit, then a patch coverage of 0% is better explained as being caused by a patch not being
available rather than ineffective patch deployment. Including the risk assessment in a summarised
form along with the metric will further help to explain the patch coverage, as a coverage of 0%
without any additional defences or steps taken is very different from a well defended vulnerability
with no patches deployed. A larger example demonstrating how these metrics can be employed
during a patch deployment is provided in table 3.2.3.7.

In-depth Patch Coverage Example A more detailed example will demonstrate the various
metrics that can be determined with patch coverage.

• If we imagine an organisation where all known vulnerabilities have been patched then
the initial patch coverage will be 100%.

CHAPTER 3. POLICY SOLUTIONS 70

• Later, a vulnerability is publicly disclosed and a patch is released at the same time.
The patch coverage for that specific patch across the organisation will start at 0%. The
vulnerability coverage is at 100%.

• A couple of days later an exploit for the vulnerability is publicly disclosed. At this
point a calculation of the patch coverage for each priority group is made:

Nm would be the number of machines in each group, Np would be 1 as we are only
calculating for one patch and can be ignored, Npi would be the number of machines
found to have the patch successfully installed during verification and Npu would be
the number of unpatched machines discovered during verification. Therefore, using
the patch coverage equation 3.1:

Mission Critical Business Critical

Nm = 230

Npi = 191

PC = (Npi ÷Np)× 100

= (
191

230
)× 100

= 0.83× 100

= 83

Nm = 654

Npi = 196

PC = (Npi ÷Np)× 100

= (
196

654
)× 100

= 0.29× 100

= 29

Operation Critical Total

Nm = 5015

Npi = 492

PC = (Npi ÷Np)× 100

= (
402

5015
)× 100

= 0.08× 100

= 8

Nm = 230 + 654 + 5015 = 5899

Npi = 191 + 196 + 402 = 789

PC = (Npi ÷Np)× 100

= (
789

5899
)× 100

= 0.13× 100

= 13

This shows that while the patch coverage of the organisation is poor at only 13%, the mis-
sion critical systems are well patched. The nature of the vulnerability could be that the
business and operation-critical priority groups are well protected by adequate edge defences,

CHAPTER 3. POLICY SOLUTIONS 71

and less vulnerable than the mission critical services, resulting in the focus on mission criti-
cal machines. Alternatively, if the vulnerability was more likely to affect user desktops these
metrics should set off warning bells.

• Ten days after the release of a patch the organisation has defined a target patch cov-
erage of 50%. The calculations above are re-calculated as 97% mission critical, 82%
business critical, 50% operation critical resulting in a total of 56% organisational patch
coverage. If the low patch coverage in operational priority machines is unusual, an in-
vestigation could help to identify problems such as a deployment fault or many out of
range mobile devices.

• Several days later an automated worm is released exploiting the vulnerability. The
metrics are again re-calculated after responding to any problem, and it is found that
the total patch coverage is now at 98% putting the threat from the worm at a very low
level.

• Another target at thirty days states that patch coverage should be 95% or higher.

As the metrics are calculated they can provide information on improving the current deploy-
ment or help identify deployment problems. In addition, they can serve as input to the risk
assessment. Maintaining a database of these metrics for past patches will allow the patch
coverage at the fixed points (10 and 30 days) to be compared between patch deployments.

3.2.3.8 Maintenance

The maintenance phase is initiated when patch deployment completion is reached (as defined by
the change management plan). This is a meta-policy step that should allow the lessons learned to
be converted into feedback with which the policy can be improved. It is a reflective step allowing
aspects of the implemented policy which are not working effectively to be modified.

Each step of the policy should be examined for errors or problems that can be improved. Infor-
mation gathering may require better research methodologies and resources, or its host discovery
methods may need to be improved. Risk assessment may require that the risk thresholds which

CHAPTER 3. POLICY SOLUTIONS 72

determine action be modified, or that the methods by which risk is measured changed. Schedul-
ing may require a different schedule that better fits the organisations needs, or a modification of
the agreed upon trigger events to ensure a faster response to patch announcements. Testing may
be incomplete and require that additional documented testing procedures be added. Deployment
may be consistently missing several mobile devices, and require improved methods for doing so.
The verification step provides redundancy for other steps, and may help turn up inconsistencies
in the way certain steps are implemented. If so, the cause of these inconsistencies should be
investigated and corrected. For example, during verification it may be discovered that the host
database does not identify mobile devices correctly, or that patch testing did not identify certain
potential errors or whether the patch really did remediate the vulnerability correctly.

During this step other activities of the organisation should be examined to see if appropriate
interactions between them and patching can be established. Two important activities that will
most certainly impact on patching are staff training and software acquisition. However, the
broad range of activities within an organisation may present much wider opportunities for the
patch management policy to be matured.

Training Shortages of the skills required for patch management should be identified and train-
ing provided. Usually, much of the skill and expertise required to implement the organisational
patch policy will reside in the patch and vulnerability groups and any subgroups they utilise.
However, these skills are not always present or at an acceptable level and some training may be
required. Additionally, some departments may require software that isn’t officially supported by
the organisation, or mobile end-users may be required to perform some of the steps from the
policy themselves (although this should be limited). To meet these needs, patch, remediation and
vulnerability management training should be integrated into the organisational training regime
where appropriate.

3.2.3.9 Summary

A summarised view of the policy is provided in table 3.2 and the figure 3.3.

CHAPTER 3. POLICY SOLUTIONS 73

Figure 3.3: Diagram of the proposed Patch Management policy

3.3 Conclusion

Effectively managing vulnerabilities requires more than a method to deploy patches effectively.
Many factors are relevant in making decisions about how best to limit the vulnerability of an
organisation. The primary and final remediation of a vulnerability brings with it its own prob-
lems. Managing all of this crosses multiple disciplines, including vulnerability, configuration,
change and risk management. This complexity can soon get out of hand and patching can be-
come a chaotic affair performed in a panic and informed by incomplete and inaccurate informa-
tion, chosen because it was the only information available. Implementing a comprehensive patch
management policy is vital for ensuring the ongoing security of an organisation. The steps de-
scribed in this chapter provide a description of how such a policy can be implemented. Each step
draws from the work of several high quality sources and a thorough understanding of the cur-
rent patch management field. Unfortunately, each organisation is unique, and the steps outlined
describe merely how a process can be implemented, not what process should be implemented.
A discussion on how to asses risk, for example, cannot judge the acceptable risk thresholds and
levels appropriate for individual organisation. Specifics should be tweaked and augmented with
internal policies, practices, and (most importantly) the experience of existing personnel. The
trends described in section 2.3 appear to be worsening, not improving. Implementing a policy
such as this takes time, since patch testing and risk assessment will initially be slow as an organ-
isation learns how best to perform those activities in their context. Malicious attackers, on the
other hand, have a head start and appear to be learning and collaborating. This impetus makes
implementing an effective patch management policy critical.

CHAPTER 3. POLICY SOLUTIONS 74

This chapter has provided a discussion on what steps are required for the effective management
of patches and vulnerabilities. It has focused on organisations as users of software. In the next
chapter the actions of vendors when they release patches are examined, and guidance on how to
best implement a patch release program in light of the complexities of vulnerability disclosure
is discussed. This should complete the picture of how to manage the complete vulnerability
life-cycle.

Chapter 4

Vendor Patch Release Policy

4.1 Introduction

The previous chapter discussed how users of software could best implement a policy for manag-
ing the patches released by creators of the software in response to discovered vulnerabilities. This
chapter reverses these roles, discussing how creators of software can best implement a policy for
releasing patches. For the purposes of simplicity, users of software will be called end-users and
creators or maintainers of software will be called vendors.

Effective policies are not only the responsibility of the users of software (end-users) - software
vendors must have a clear understanding of how they manage their patches, and how best to re-
lease them. Historically, vulnerability disclosure and responding to vulnerabilities has proved
difficult to standardise, with a high level of confusion and antagonism between security re-
searchers and vendors. To combat this and ensure meaningful and useful interaction between
researchers and vendors, several disclosure policies have been suggested. A resource dedicated
to collecting publications related to disclosure lists a total of twenty two different disclosure poli-
cies published between 1999 and 2004 [117] by vendors, security researchers and third parties.
This confusion makes it difficult for vendors to standardise on a release policy, and instead the
responsibility for formulating an effective patch management policy is passed onto the end-user.
As will be demonstrated in this chapter, this is because the type of disclosure has an impact on
the effectiveness of a vendor’s patch release policy.

75

CHAPTER 4. VENDOR PATCH RELEASE POLICY 76

In an effort to ease the end-users’ patching burden, some vendors have decided to move to a pre-
dictable patch release schedule. The first vendor to announce such a move was Microsoft. Soon
afterwards Oracle and Adobe announced they would also move to a predictable cycle. John
Pescatore of Gartner believes predictable patch release schedules are on their way to becoming
an industry standard [118]. However, simplifying a patch release cycle ignores the complexities
that the full disclosure debate has introduced, and risks oversimplifying the matter, as will be
demonstrated below. In both Microsoft and Oracle’s case, the reactions to the announcements
were varied. Some security experts were for the move [119, 120], others against it [121], and the
majority were silent. The lack of consensus indicated a shortage of research and understanding
as to the possible effects. Since then both Microsoft and Oracle have come under heavy crit-
icism, and received praise, for their patch schedule implementations by security professionals
commenting on the same events. Propagating this policy to other vendors without a thorough
analysis and with little understanding of the effects would not be desirable.

Surface observations of the implemented schedule have revealed both successes and failures.
This chapter provides a detailed argumentative analysis of patch release schedules and their ef-
fectiveness. By examining examples of how various types of disclosure affect the risks faced by
end-users, recommendations on how patch schedules should be implemented and when they are
effective, or not, are formulated. In addition, lessons learned from recent public security inci-
dents are used to suggest additional improvements to the process. The resulting observations are
used to describe a method for other vendors to implement such a cycle that will both minimise
risk and help ease the burden of patching on administrators.

4.2 State of the Art

In the past, vendors operated without an obvious patch release schedule. When a vendor was no-
tified of a vulnerability, either through delayed disclosure or otherwise, the general approach was
to create a patch and distribute it as soon as possible1. The problem with the ”release when ready”
approach is that it requires end-users to continually monitor patch and vulnerability announce-
ments. The average systems administrator has to check for new security patches, usually daily or
weekly depending on the available resources. This creates a situation in which, combined with
worsening number of vulnerabilities described in section 2.3 and additional problems created by

1Some vendors had a more nuanced approach, however this is not currently relevant and is discussed later

CHAPTER 4. VENDOR PATCH RELEASE POLICY 77

patches described in section 2.4, many administrators, either due to a lack of resources or will,
simply are not installing patches effectively. Eschelbeck [7, 8, 9] is the only researcher at the time
of writing to have provided empirical data demonstrating the impact of patch release schedules.
Eschelbeck’s data [9] shows that in 2004 it took 21 days to patch half the vulnerable machines on
the internet after a patch was release (i.e. at 21 days 50% of vulnerable machines are patched),
and 62 days for internal systems. Internal systems are increasingly vulnerable (as shown in sec-
tion 2.3.2), due to the increased multiplexing of protocols over fewer ports, and content control
decisions moving from the organisational network boundary to the end-user. Thus, it has be-
come necessary to protect internal systems as one would external systems, and the window from
patch release to patch deployment (62 days) allows ample time for intrusions. Several notable
examples of this have been large scale worm attacks such as the Code Red, Nimda, Sadmind,
SQL Slammer, Blaster, Sasser, Witty and Zotob worms, which all showed significant numbers
of internal ’desktop’ machine infections. To combat this two high profile vendors, first Microsoft
[122] and then Oracle [123], and more recently Adobe [118] chose to move to a monthly patch
release schedule. The caveat was that critical patches could be released out of schedule, similar
to the internal policy of some organisations where critical patches are given an expedited install
plan (see section 3.2.3.3). Microsoft chose to release patches on the second Tuesday of each
month (a monthly release), while initially Oracle chose to follow suit, then changed to a quar-
terly release cycle [124]. However, Oracle have come under heavy criticism, with some released
patches containing flaws up to three years after the vulnerability was announced [125]. Adobe,
while planning to implement a monthly schedule, had not done so at the time of writing. Ora-
cle’s response to published vulnerabilities and quality of released patches has been poor. Most
recently, Gartner came out severely criticising Oracle’s patch practices [126]. Thus, given the
lack of alternatives, Microsoft provides the best implementation of a patch release schedule, and
will be the focus of the examples used. However, this discussion is intended to be relevant to any
vendor implementing a patch release schedule. In particular, this discussion applies to both open
source and proprietary vendors.

The next iteration of Eschelbeck’s research [8] showed that the scheduling appears to have im-
proved things somewhat. In 2005 it took 19 days (down from 21) to patch half of the vulnerable
machines on the internet, and 48 days (down from 62) to do the same for internal machines. This
improvement in patching speed is provided in table 4.1. However, the improvement in patching
is likely due to many other factors such as the renewed hype around patching, better patch and
vulnerability notification, and better automated patching tools, and cannot all be credited to patch
schedules, especially since many vendors do not implement schedules as yet. The specific im-

CHAPTER 4. VENDOR PATCH RELEASE POLICY 78

pact of scheduled patches was measured by Eschelbeck as being installed 18% faster. Additional
statistics from Microsoft [127] indicate that the number of people applying Microsoft patches
has improved dramatically (sometimes as high as 400%) since the change to a regular patch
schedule. At first glance, the release schedule appears to be vindicated and proved successful -
however, this research hypothesises that there are other intrinsic flaws in a patch release cycle
that cannot be discounted.

2003 2004 2005
External System’s Half-Life 30 days 21 days 19 days
Internal System’s Half-Life N/A 62 days 48 days

Table 4.1: Half-Life of Vulnerabilities [7, 8, 9]

4.3 An analysis of patch schedules

This section provides an argumentative analysis of patch schedules. An analysis of the specific
effects schedules have when vulnerabilities are disclosed differently is provided. Some back-
ground is necessary for the discussion, namely the arguments provided by instigators of patch
schedules and background on the types of disclosure.

Specifically, a patch schedule provides a predictable routine describing how often and when
patches are to be released, with a constant time between patch releases. This is supposed to
provide two primary benefits:

• Higher Quality Patches

• Better Patch Deployment Planning by End-Users

These improvements are advanced by vendors in the various press releases and discussions on
implementing schedules [118, 122, 123]. There are other indirect benefits sometimes cited, such
as faster deployment and greater patch deployment. However, these are knock-on effects of the
improvement in quality and planning listed above, and are not solely influenced by quality and
end-user planning alone. For example, more detailed advisories, advertised to a wider audience,
could also result in faster deployment due to more readily available information for decision-
making, and greater deployment due to a wider demographic being aware of the patches. Thus,

CHAPTER 4. VENDOR PATCH RELEASE POLICY 79

the focus will be limited to the direct benefits claimed by vendors. The analysis below discusses
what trade-offs occur in gaining these benefits, and whether such trade-offs are acceptable. Most
importantly, these benefits will provide ample justification for a patch release schedule if and
only if they;

1. Are actually achieved

2. They are not achieved at the cost of a large increase in risk

3. They cannot be achieved through better means.

4.3.1 The Disclosure Debate

Before a discussion of the differences created in a schedule by different types of disclosure can
be had, it is necessary to provide some background on the types of disclosure and the disclosure
debate.

There are two primary types of disclosure: delayed, and instantaneous. Delayed disclosure is of-
ten referred to as ’responsible disclosure’. Unfortunately, this is an emotionally-laden term which
is not always accurate, and will be avoided in this discussion. There has been much debate in the
internet community about the socially optimal method of disclosure. The full disclosure move-
ment of the late 90’s argued that by providing as much detail about a security vulnerability, the
information was brought into the open and provided administrators with information with which
to make their own security decisions. The introduction of the BugTraq2 and Full Disclosure3

mailing lists was an important part of this. Where previously vulnerabilities had been discussed
in private between security professionals, the information was now freely available [128]. Arora
et al. [129] state that proponents of full disclosure argue that it “increases public awareness,
makes as much information public as needed for users to protect themselves against attacks, puts
pressure on the vendors to issue high quality patches quickly, and improves the quality of soft-
ware over time.” The problem with full disclosure is that without an effective defence for the
vulnerability, usually in the form of a patch, the information is of more use to malicious entities
than to users [130]. Thus, the concept of delayed, or responsible, disclosure was introduced.
Here the information is first released privately to a vendor, and then disclosed publicly when

2http://www.securityfocus.com/archive/1
3http://lists.grok.org.uk/mailman/listinfo/full-disclosure

CHAPTER 4. VENDOR PATCH RELEASE POLICY 80

the vendor releases a patch [128]. However, many vendors adopted an attitude of ’shooting the
messenger’, wherein researchers who disclosed the vulnerability were publicly slammed [131]
for reporting on vulnerabilities that would exist in the product whether they were reported or not.
Most recently, Michael Lynn had his presentation at the Black Hat 2005 conference literally torn
from conference proceedings and threats of legal action from Cisco systems for elaborating on
previously disclosed memory corruption vulnerabilities [132]. At the same time, vendors would
sometimes excessively delay the release of a patch [129], leading to much antagonism between
vendors and security researchers. As a result, third-party trusted disclosure intermediaries such
as CERT/CC were used to intervene in vulnerability disclosures, providing reasonable deadlines
for vendors and ensuring security researchers disclosed ’responsibly’ [130]. This also resulted in
several recommended disclosure policies, with the more noteworthy being Rain Forest Puppy’s
RFPolicy 2 [133], the Organisation for Internet Safety’s policy [134], Russ Cooper’s NTBugTraq
policy [135] and CERT/CC’s policy [136]. Several papers have been written discussing the pros
and cons of non-disclosure, full disclosure, partial disclosure and ’socially planned’ disclosure
[71, 4, 137, 129, 130, 128, 138]. A discussion on the various types of disclosure is beyond the
scope of this section, but a simple summary is that the debate has fallen to the side of delayed
disclosure. It is sufficient to understand that there are two types of vulnerability disclosure, one
in which the public becomes aware of the vulnerability when a patch is released and the other in
which the public and the vendor become aware when the vulnerability is released.

4.3.1.1 Delayed Disclosure

Figure 4.1 provides a visual depiction of a simplified vulnerability life-cycle based on the model
presented in section 2.2, in which the disclosure is delayed.4. The vulnerability is created when
the software is first developed. At some point the vulnerability is discovered, this can happen
multiple times and by different parties. The vulnerability is then privately reported to the relevant
vendor and a patch is developed. At this time the only exploitation of the vulnerability occurs
by the original discoverer and is of a limited scope. When the patch is ready, the vulnerability
is publicly disclosed and corrected at the same time. At this point, the number of vulnerable
machines starts to decrease as patches are installed. At the same time the disclosure of the
vulnerability details and the ease in which patches can be reverse engineered results in a rise
in public exploitation of vulnerable machines. As the vulnerability and patch are publicised,

4The vulnerability life-cycle used here is simplified to highlight the differences between the types of disclosure,
without muddying the waters with additional details.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 81

Figure 4.1: Delayed Disclosure and its effects on vulnerable machines and exploitation
Source: Modified from Rescorla [4]

the number of vulnerable machines continues to decrease while the number of intrusions of still
vulnerable machines continues to increase. A scripted exploit could be released soon after the
release of the patch, or longer. This will result cause a rise in the rate of exploitation, but is not
relevant for the purposes of discussing the type of disclosure. It is sufficient to know that active
exploitation is occurring, and is not included in the figure.

4.3.1.2 Instantaneous Disclosure

The process of instantaneous disclosure is similar to delayed disclosure, but with some pertinent
differences. Figure 4.2 details the relevant events. Once again, the vulnerability is created and at
some point discovered. However, instead of reporting the vulnerability to the vendor, the exploit
is circulated within a community of black hats and private exploitation occurs. Sometime after
this, the private exploitation is discovered ’in the wild’ by a member of the public community
and is reported to the vendor. At this point the process described in delayed disclosure occurs
but with the difference that public and private exploitation occurs until a fix is released. The rate
of exploitation will increase as the vulnerability is publicised and the exploit is possibly scripted.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 82

Figure 4.2: Instantaneous Disclosure and its effects on vulnerable machines and exploitation
Source: Modified from Rescorla [4]

Once again, the increase in exploitation caused by the scripting of the exploit is not displayed.
The number of vulnerable machines will only start to decrease once a patch has been released.

4.3.2 Patch Schedules and Delayed Disclosure

The benefits of withholding the information until a patch is released are most obvious when the
vendor has a choice as to when a vulnerability is publicly disclosed: The problem is acknowl-
edged, but a fix is available. It is important to remind the reader that open source projects also
withhold vulnerability information from the general public until a patch can be developed. For
example, the Mozilla foundation frequently fixes ’Security-Sensitive’ bugs which had not pre-
viously been disclosed [139]. A slight modification to ensure that these patches are released
per a defined schedule brings more benefits. Administrators can avoid surprises and make plans
ahead of time. Resources can be allocated, time scheduled, and deployment planned. In addition,
the vendor can thoroughly test a patch to reduce the likelihood of a faulty patch being released
without the pressures of attacks in the wild that need to be mitigated. With both the details of a
vulnerability available and a patch which can be reverse engineered, a scripted exploit, whether

CHAPTER 4. VENDOR PATCH RELEASE POLICY 83

released publicly or not, can be rapidly created [70]. This forces the vulnerability life-cycle to be
synchronised with the patch release schedule. The only potential problem is that knowledge of
the vulnerability may already exist within private and malicious groups or people5. This brings
us to the original justification for full disclosure; by publicly announcing a vulnerability and
encouraging people to patch, the number of attack vectors available to such groups is reduced.
Were there no existing threat, the vendor could silently fix the vulnerability in the next upgrade.
The only defence from attacks against unknown vulnerabilities is a comprehensive defence-in-
depth strategy which will hopefully mitigate, or at least detect, such an attack. Organisations
currently face these threats, and releasing the patch per a schedule which results in the patch
being delayed longer than if the vendor released it when ready, will not significantly increase the
threat to an organisation from malicious attackers. This assumes a limited exploit distribution
within these ’underground’ groups, a safe assumption in this case. Thus, the reduced threat from
faulty patches and the increased efficiency of an organisation’s patch management policy appear
to more than justify this marginal increase in risk.

An important assumption is that the vendor develops the patch within a reasonable time frame.
While the threats from an undisclosed vulnerability are limited, they are usually not zero. There
is a potential for a separate discovery of the same vulnerability to occur by a malicious agent, or
for the vulnerability to be ’leaked’ by either the original researcher or agents within the vendor.
The possibility of these events occurring increases over time and provides an incentive for a patch
to be developed quickly. Thus, patch schedules with too long a wait between releases are likely to
provide more than a marginal increase in risk and should be avoided. This is partly why Oracle
is invalidated as providing a good implementation of a patch release cycle, as their quarterly
release is too long. Unfortunately, there is little research into the probability of a leak occurring
or a black hat discovering the same vulnerability, and this claim is based on an informed guess.

4.3.3 Patch Schedules and Instantaneous Disclosure

When vulnerabilities are disclosed irresponsibly the vendor no longer has control over when de-
tails of the vulnerability and a related exploit are released to the public. In the case of zero-day
exploits, a working exploit is made publicly available without providing the vendor with ad-
vanced warning. Similarly, if no proof of concept exploit was released with the vulnerability, the

5It is possible that the number of publicly disclosed vulnerabilities and the poor patching record of many organ-
isations provides malicious groups with enough attack vectors without needing to research their own.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 84

existence of a vulnerability for which there is no patch provides an attractive target and it can be
assumed an exploit is not far off. Current research indicates that the release of a scripted exploit
triggers the largest increase in attack activity [44]. Given the large increase in the threat level,
minimising vulnerable organisations’ exposure is a priority for minimising risk. The critical fac-
tor thus becomes how soon the vulnerability can be effectively remediated. If a patch schedule
will allow the patch to be released as soon as possible, then it is vindicated. If, however, the patch
is delayed until the next release date instead of being released as soon as possible, this action is
only justified if significant other benefits occur that cannot be achieved by any other means. The
two benefits most commonly cited, as mentioned in the previous section, are that the delay due to
the patch schedule allows more testing and allows administrators to plan for patch deployment.
Both of these will be examined.

4.3.3.1 Quality

The argument for improved patch quality through more patch testing can be a persuasive one. The
effort required by an organisation to minimise the risk of a patch causing problems are substantial
and, as shown in section 3.2.3.4, represent the single largest bottleneck in patch deployment.
Improving the quality of patches to a point where they could be deployed with little testing
would substantially speed up patching and reduce risk. The argument is that by delaying the
release of a patch, the vendor can engage in a thorough testing process. For example when a
vulnerability in WMF files was discovered in the wild (a type of instantaneous disclosure exploit)
[74], Microsoft’s Security Response Centre had this to say about the patch [140]:

We have finished development of a security update to fix the vulnerability and
are testing it to ensure quality and application compatibility. Our goal is to release
the update [...] as part of the regular, monthly security update release cycle, although
quality is the gating factor.

However, the question must be asked: why must this testing be conducted in isolation? Surely
collaboration with the wider community of end-users utilising the vendor’s products would result
in an increase in testing and wider test bed? If the reader will bear with us, the benefits of
community collaboration are well demonstrated by the activities of Lawrence Lessig, a Stanford
professor of Law, who has been pioneering the Creative Commons6 movement. This movement

6http://creativecommons.org/

CHAPTER 4. VENDOR PATCH RELEASE POLICY 85

seeks to encourage collaboration and remove the systems of control that seek to monopolise
creativity. Lessig and his proponents advocate a remix culture in which the works of others can
be freely used and built upon. One example of the benefits of such a culture were demonstrated
when Lessig released his book Free Culture for free over the internet, something that until now
would have been ludicrous to suggest to a publisher.

Last year Penguin Press made an unprecedented move to release Lessig’s ’Free
Culture’ under a [...] license that enabled people to freely download the book from
the internet, and make derivatives for non-commercial purposes. After 24 hours, the
book had been made available under 9 separate formats (txt, pdf etc.), after 36 hours,
an audio version of the book had been announced, after 48 hours, a wiki had been
launched [...] for others to build on and add to, and after one week, 200 000 copies
of the book had been downloaded. Today, non-commercial translation projects have
started in Chinese, Catalan, Danish, French, German, Italian, Polish, Portuguese (2)
and Spanish (2). There are 3 audio versions of the book as well as versions for the
Palm, MobiPocket and Newton. [141]

Since then several other derivatives have been created, including more ebook versions and sev-
eral easy to use hyperlinked versions. However, such creativity and collaboration is not unique
to publishing and and provides a highly appropriate analogy to a recent event in the world of
patching. The WMF vulnerability, for which no patch was available, was discovered on the 27th

of December 2005 [142, 143]. One day later, initial anti-virus [144] and snort intrusion detec-
tion signatures [145] were available for the first variant. Two days later, a partial workaround
for the vulnerability was posted [146], a movie of an exploit occurring was provided [146], and
malicious sites exploiting the vulnerability were being shut down [147, 148]. Five days later, a
third-party patch was provided by Ilfak Guilfanov [149], and later that day the patch had been
disassembled and verified by the Internet Storm Centre (ISC), which offered a digitally signed
version [150], A block-list of malicious sites and net-blocks utilising the exploit was created
[151], and CERT provided a detailed vulnerability note on the issue [142]. Six days later, a ver-
sion of the unofficial patch was made available that allowed for an unattended install [152], and
was distributed along with scripts for deploying the patch enterprise-wide [153]. On the same
day, ’safe’ versions of the exploit were provided for vulnerability testing [154] along with an
executable vulnerability checker for vulnerability testing and patch verification [155]. The next
day a comprehensive FAQ on the vulnerability was made available by the ISC [156], and within

CHAPTER 4. VENDOR PATCH RELEASE POLICY 86

a few hours this had been translated into 12 different languages, which had increased to 17 by the
day after that [157], with presentations available in several different formats [156]. Eight days
later, the unofficial patch was made available as a Microsoft Installer Package (MSI) by Evan
Anderson [158], for easier deployment, and this too was verified and signed by the ISC. Later
that day the site hosting Guilfanov’s patch experienced difficulty due to high load, but returned
a few hours later with 9 additional mirrors serving the files [159]. During this time, Microsoft
maintained that an official patch would only be released on the 10th of January 2006, during the
normal patch scheduled release [160]. Following massive consumer pressure Microsoft eventu-
ally capitulated, releasing the patch on the 5th [161].

Why then did Microsoft not cooperate with this community in developing a patch? If knowledge
of the vulnerability already existed, then the benefits of keeping the patch confidential are lost,
particularly when beta patches could be improved on and tested by such a wide and active com-
munity. Ironically, Microsoft possibly acknowledges this argument with their Security Update
Validation Program (SUVP), which allows for patches to be beta tested within a chosen group
of organisations, such as the US Air Force [162]. Microsoft benefits by the additional testing
provided by an organisation with enough resources and interest to thoroughly test patches, and
in return the Air Force benefits from the early protection afforded by getting a jump start on
their patch deployment process7. Although members of the SUVP are not allowed to use these
beta patches in a production environment, they can benefit from early testing and ensuring their
configuration is supported. There is no reason to assume these benefits would not scale up-
ward if such a beta program was extended to include the public. A possible counter-argument
to this is that a vendor can implement a better planned testing process, whereas testing within a
community will involve a lot of redundancy and cannot be guaranteed to perform all necessary
tests. However, this is simply a false dichotomy, as all the benefits of a well planned vendor test
schedule can be accrued in addition to testing input from a community. Tools and mechanisms
allowing members of the community to interact and share their testing experiences already exist
in the form of public mailing lists such as BugTraq and PatchManagement8. The only modifi-
cation required to take advantage of this testing community is to release the patches early and
clearly mark them as unsupported beta’s. By providing obvious warnings of the dangers inher-
ent to deploying a beta patch (on the patch download site for example, and in the actual patch’s
installer) or taking further steps such as providing a registration system, users who do not know

7Given the ease with which exploits can be reverse engineered from patches, it is worrying to contemplate the
American military being given such offensive capabilities before the rest of the world.

8http://patchmanagement.org/

CHAPTER 4. VENDOR PATCH RELEASE POLICY 87

better can be prevented from installing these beta patches.

The level of community involvement in response to the WMF vulnerability, particularly related
to the unofficial patch, is unusual. While IDS and AV signatures, and cooperation to shut down
malicious sites, are (thankfully) fairly standard, the community does not always get as involved
as it did for the WMF vulnerability. The situation may have resulted from the combination of sig-
nificant threat level and confirmed inaction from Microsoft. However, while arguments claiming
that one cannot always expect this level of community involvement are correct, this does not in-
validate the point. If the community were to provide no additional help or guidance (an unlikely
case), the vendor would still not lose anything by releasing beta patches. The community would,
at worst, fail to benefit from the early release, but would not lose anything either. In addition, if
the vendor were to release details of which configurations the patch had been successfully tested
on, the few which fulfilled those criteria could benefit from early patching without having to wait
for all testing to be completed, ensuring that even if the community were of no help with testing,
some organisations’ exposure could be minimised sooner.

4.3.3.2 Planned Deployment

“Having a predictable schedule makes it easier for customers to plan and when
you can plan, it puts less stress on the customers’ infrastructure and their people and
the results are better.”

– Mike Nash, Corporate Vice President responsible for Security, Microsoft [163]

Providing a predictable patch release schedule can endear end-users to their vendor. The ca-
pability to plan and allocate resources ahead of time results in a much smoother deployment,
with a smaller likelyhood of errors. It moves patching from an emergency-mode procedure to
an understood business process. Unfortunately, these benefits are, once again, only available
if the vulnerability disclosure was delayed. Threat and vulnerability monitoring are a separate
process from patch deployment. A patch schedule helps to synchronise the release of the patch,
vulnerability, and exploits so that threat, vulnerability, and patch monitoring can likewise be syn-
chronised. However, if the vulnerability was instantaneously disclosed, the vendor is not able
to maintain this synchronisation. Thus, an end-users need to be constantly monitoring their net-
works for attacks, and understand and respond to potential threats. If a significant threat and
vulnerability are discovered, a risk assessment must be conducted and steps taken to mitigate the

CHAPTER 4. VENDOR PATCH RELEASE POLICY 88

risk. This must be conducted whether the patch exists or not. Thus, the exact emergency mode
scheduling patching seeks to avoid persists. The best way to “put less stress on the customers’
infrastructure and people” is to provide an effective remediation as soon as possible. Placat-
ing end-users and playing down the threat to maintain the patch schedule instead of releasing a
beta patch and encouraging community support to develop quality remedies is counter-intuitive.
Even if the benefits of planning did apply in this situation, the corresponding increase in expo-
sure is an unacceptable trade-off. This increase in exposure makes it more likely that an intrusion
may occur. Intrusions are usually unscheduled and costly to recover from, which would provide
a greater inconvenience than deploying an unscheduled patch. The emphasis within the patch
management community and this document is for an organisation to perform their own risk as-
sessment and choose a course of action relevant to their needs. However, without the option of an
effective remediation, a vendor would be severely limiting the organisations’ options for dealing
with this risk.

4.3.3.3 Examples

The critical flaw in a patch release schedule is that it assumes all patches are responsibly dis-
closed. While the WMF vulnerability has provided the primary example used in the discussion
above, there are other examples of instantaneously disclosed patches that have remained un-
patched for a significant amount of time and resulted in a needless increase in an organisation’s
exposure to threats. Once again, the focus on Microsoft is unavoidable, given the lack of any
other vendor having effectively implemented a patch release cycle. The WMF vulnerability is
unique in its level of community support and discussion, particularly from Microsoft, who have
been reluctant to discuss their motives in the past. Thus, the examples below are of vulnerabilities
which could have been patched sooner, but were not, for the sake of the patch schedule. How-
ever, they do not demonstrate the same level of community involvement as the WMF example
above, and contained no serious flaws, indicating that the testing within Microsoft is effective.
Unfortunately, they do illustrate both the unacceptable increase in exposure and an inordinately
large amount of time from vulnerability disclosure to patch release. It should be noted that these
examples are illustrative of the failings of a patch schedule for instantaneously disclosed vul-
nerabilities only; Microsoft’s patch schedule has proved quite effective for delayed disclosure
vulnerabilities.

Krebs [164] researched the time it took Microsoft to release a patch from either the time of dis-
closure or the time it was reported to the vendor for 2003, 2004 and 2005. The dates and times

CHAPTER 4. VENDOR PATCH RELEASE POLICY 89

were gathered by contacting the original researcher who discovered the vulnerability, and Mi-
crosoft. Unfortunately, according to our investigations, Krebs’ calculations appear to be wrong
[165] with inconsistencies and errors in the number of days from first disclosure until patch re-
lease and the number of patches counted. However, the dates he gathered appear correct, and
once the calculations were fixed, because some days were too high and others too low, his con-
clusions based on the averages remain true. The results appear in table 4.2, and show that when
Microsoft moved to a scheduled deployment in 2004, the average time it took for a patch to be
released increased for all vulnerabilities. They also show that for instantaneously disclosed vul-
nerabilities, Microsoft has been getting faster at patching. Both these results make sense. The
average time to produce a patch has increased due to the additional testing and quality assurance
that occurs, and the average time to produce a patch for instantaneously disclosed vulnerabilities
has decreased due to an increased security effort and an increase in threats. However, even at
the lowest average of 46 days, this is still far too long. This provides plenty of time for scripted
exploits to be circulated and used by anyone, including unskilled attackers. To reiterate, even if
the patch quality is increased, the high exposure time buys this quality at too high a cost. By
involving the community in the testing effort high quality patches can be produced sooner than
in this situation.

2003 2004 2005

Number of Critical Patches 34 28 37

Average Days from Report to Patch 90.7 136 134

Average Days from Full Disclosure to Patch 73.6 55 46

Table 4.2: (Corrected) Microsoft Time to Patch Summary

To support the claim that 46 days is too long a wait for users, two examples of the type of damage
that can occur during these long exposure times can be found in MS04-040 and MS05-054.

MS04-040 This Internet Explorer patch took 38 from the date of public disclosure days to
produce. This vulnerability was not disclosed to the vendor before hand. The average time
taken to release such a patch in 2004 was 55 days (38 days is therefore well below the average).
However, during this time a variant of the MyDoom virus used the exploit as a propagation
mechanism, resulting in mass compromises. In addition, a banner-ad service was compromised,
and the exploit placed into the advertisements. These were then distributed across many high

CHAPTER 4. VENDOR PATCH RELEASE POLICY 90

profile sites such as The Register and BBC leading to a substantial number of compromised
machines [166]. As a final blow, the Bofra/MyDoom mass mailing worm was developed, and
used the MS04-040 vulnerability to infect a machines [167]. These three large scale incidents all
occurred within the 38 day window.

MS05-054 The original vulnerability related to this patch was publicly disclosed on May 28th

2005. However, the vulnerability was described as a DoS attack and did not carry a high criti-
cality. Microsoft still had not provided a patch after five months, at which point it was publicly
disclosed, on November 21th, that the vulnerability could allow remote code execution, raising
its criticality. Proof of concept code was provided and soon afterwards the attack was detected in
the wild [168]. A patch to repair the vulnerability was only released on December 13th as part
of the normal patch release. This means that, despite having 177 days to develop a patch, the
vendor still took 22 days to produce the patch once it had been re-evaluated as critical.

4.3.4 Conclusion

The conclusion is quite simply that the arguments for a patch release schedule assume that all
vulnerability disclosure is delayed. The benefits claimed for a patch schedule are that a higher
quality patch can be released and that end-users can better plan and schedule their deployments.
However, when a vulnerability is disclosed instantaneously, these benefits are either lost, moot,
or could be better achieved by other means. Patch quality could be achieved faster by utilising a
community testing approach, and scheduled patch deployments are not useful if they are likely
to result in unscheduled post-incident recovery.

4.4 Advice for implementing a Patch Release Schedule

The prescribed policy is to have two release programs, one scheduled and predictable for delayed
disclosure vulnerabilities, and one immediate and collaborative for instantaneously disclosed
vulnerabilities. This simple solution is similar to what is already supposedly implemented by
vendors with their possibility of ’out of band’ patches. However, there are problems with the
criteria used to differentiate between when a patch should be released per schedule or not. In

CHAPTER 4. VENDOR PATCH RELEASE POLICY 91

addition, specific guidance is required as to how vendors can best help end-users and involve
the community to improve patch quality at a faster rate. The policy discussed below provides a
simple and effective method for releasing high quality patches and helping end-users to minimise
their risk. It first provides a clear criterion for discerning which patch release mechanisms should
be used. It then details how each mechanism can be implemented, with reference to several
currently effective vendor practices.

4.4.1 Dual Schedules and Separation Criteria

As mentioned above, a vendor should utilise two release mechanisms. The first is a predictable
and regular schedule, the second an unpredictable ’when ready’ release. One of the current
criteria for distinguishing when to use which mechanisms appears to be risk. If a sufficiently large
risk exists, in the form of a significant threat, then a patch will be released out of band. Threat
is the deciding factor in the incomplete risk assessment conducted, as vulnerability appears to
make little difference. When a worm is released or significant exploitation is detected, there is
more pressure to release a patch out of band, often in the form of customer complaints and bad
press reports. However, if an instantaneously disclosed vulnerability indicates that a significant
proportion of end-users will be vulnerable, then the pressure to patch only appears to come after
a large threat is detected. For example, Microsoft’s justification for releasing the WMF patch as
per scheduled indicated that their ’intelligence sources’ did not perceive a large threat [140], and
the patch released out of band only once significant customer pressure had been brought to bear.
Thus, the current criteria can be extended to be one of either threat or external pressure. There
are problems with these criteria. The problem with responding to threats is that a widespread and
recognised threat does not negate the possibility of targeted and specific attacks. Vendors should
be seeking to minimise all vulnerability, not to minimise significant threats only. The problem
with responding to external pressure is a similar one - once people are detecting attacks, it is
often too late. Vendors should be seeking to prevent an attack in the first place. In addition, the
size of the threat and external pressure are not easy to measure or objective criteria. A vendor’s
view of threats abstracted across all end-users is naturally a generalised one, so that, while certain
organisations may be facing significant threats and others none, the view to the vendor is only a
medium threat. As for external pressure, the amount of ’noise’ one group makes is only weakly
linked to the actual problem. Thus a specific, objective, and measurable criterion is needed to
differentiate between release mechanisms, and determine which should be used. This document
proposes that the form of disclosure be that criterion, and proposes the following maxim:

CHAPTER 4. VENDOR PATCH RELEASE POLICY 92

If a vulnerability is disclosed responsibly then release the patch at the earliest pos-
sible scheduled release date. Alternatively, if a vulnerability has not been disclosed
responsibly then release at the earliest possible date, ignoring the schedule.

This is the most relevant criterion if the arguments given above, which conclude that the benefits
of patch scheduling only apply in cases of delayed disclosure, are taken into account. In addition,
this criterion is trivially easy to determine and can be objectively judged by both the vendor and
end-users. Vendors should therefore adopt this as the discerning factor between a scheduled
release and a critical release, and clearly communicate as much to their end-users to prevent
misunderstandings.

4.4.2 Predictable Patch Release Schedule

Taking cognisance of the above, the vendor should develop a regular release schedule for those
patches covering vulnerabilities which had their public disclosure delayed. To reiterate, a delayed
disclosure vulnerability is one which has been privately disclosed to the vendor. Most often
researchers, who disclose vulnerabilities privately, will synchronise the release of their advisory
with the time at which the vendor releases the patch. For example, eEye security maintains a list
of vulnerabilities [169] they have reported to vendors, for which a patch has not been released
and they have been waiting to disclose their advisory. However, on occasion a researcher will
specify a fixed date at which they will disclose their research. If negotiations fail and the fixed
date is out of the schedule then the customers should be informed of the out of band release. This
is a rare occurrence however, and is an example of why vendors should attempt to maintain good
relationships with the security research community.

An important part of creating such a schedule is deciding on the length between patch releases.
The difficulty in setting this length is twofold. The first is in choosing a length that reduces
the time available for the vulnerability to be either discovered independently or leaked. The
possibility of a vulnerability being discovered independently is only a concern for schedules that
extend over several months. It is unlikely that such an extended schedule is necessary, as the
majority of patches should not take long to develop and test, particularly since the critical release
will require rapid patch development and testing. In addition, there is the possibility of delaying
the release of a patch for a number of schedule iterations. For the same reasons that the schedule
shouldn’t leave too mcuh time between iterations - there should be a maximum cap on the number

CHAPTER 4. VENDOR PATCH RELEASE POLICY 93

of releases for which a patch can be delayed without very good reason. The second difficulty
is in ensuring that the release cycle is optimised for all end-users. The deciding factor in this
optimisation will be how often end-users can realistically afford to engage in patch management
activities. Customer feedback and surveys should be conducted to gauge the optimal length. Bear
in mind that customers will have a bias towards patching less often as it translates to a smaller
workload. This bias should be offset by the desire to minimise the potential of a leak or separate
discovery, and to keep the number of patches deployed per release to a reasonable minimum, as
offloading too many patches at once makes end-user risk assessments too complex, can impair
the efficiency of monitoring efforts, and exposes an organisation to too many threats at once. The
current trend is towards a monthly patch cycle. A charitable assumption is that Microsoft, Oracle
and Adobe engaged in comprehensive end-user discussion and the resulting choice of a month
is optimised for the above values. However, the needs of customers, the frequency at which
vulnerabilities are discovered and the speed at which patches can be developed are all dependant
on the vendor, and as such this value cannot be generalised across all vendors.

One potential concern raised by an ’industry standard one month patch release’ is that admin-
istrators may be flooded with several patches from separate vendors on the same day creating
the same problems a vendor was trying to avoid. Alternatively, if the patches are released on
different schedules at different times of the month, the problem of constantly applying patches
(which schedules try to minimise) is re-created. This is a difficult problem that will affect end-
users with multiple vendors for which vulnerabilities are regularly released. While automated
patch deployment solutions will help with the deployment and installation of these patches, they
provide little support for the larger and more time consuming problem of testing them. Ide-
ally, end-users will standardise on manageable baselines. It will be in the vendor’s interest to
forge connections between vendors whose software is commonly used in conjunction with other
vendors’ to ensure that the number of patches released at one time are kept to a minimum, and
to interact correctly. In addition, planning for patches to be released within short gaps of each
other would allow end-users to plan deployment and manage threats more effectively than if all
patches were released on the same day. While this ’multiple vendor’ problem is quite limited
at the moment, as more vulnerability research occurs and consequently the number of patches
released grows, this problem may worsen. Once such example of the multiple vendors problem
was on July 12th 2005 when patches from Microsoft, Oracle, Mozilla and Apple were all re-
leased on the same day [170]. Granted, only two vendors engaged in a predictable release, but
even if end-users had been aware off all the patches released, some end-users requiring all the
patches would be forced into an awkward triage.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 94

As privately disclosed vulnerabilities must remain private until a patch is available, a discreet,
secure and confidential group of developers should be tasked with managing security patches
and vulnerabilities. This is particularly true of open source vendors, where the development is,
by its nature, open. The majority of vendors already have such a group implemented, and it is
only mentioned as a requirement here in passing. The members of this group should be held
accountable for any leaks, and given the required access to ensure that they can develop patches
quickly. Given that patch development cannot be a task assigned to a small and constant group
and by its nature spans all development and developers, mechanisms for temporarily bringing in
other groups of developers, testers etc. with the same levels of confidentiality and accountability
need to be developed.

4.4.3 Critical Patch Release

The critical patch release mechanism will seek to release a patch as soon as possible after the dis-
closure of an instantaneously disclosed vulnerability, where the vulnerability was not privately
disclosed to the vendor beforehand. In this situation the vendor would be informed of the vulner-
ability at the same time as the general public. This does not always occur through the release of
a vulnerability advisory - a zero-day exploit could be provided, or a vulnerability advisory could
be accompanied by proof-of-concept code. In all of these situations, a vulnerability has been in-
stantaneously disclosed. Some vendors already claim to have implemented such a critical release
strategy. However, as discussed above, this release mechanism is only invoked at a subjective
point determined by the vendor. In this version, the disclosure type of the vulnerability is the
only appropriate discerning criterion. If a vulnerability has been privately disclosed and, before
the chosen patch release date the vulnerability is either leaked or discovered independently and
publicly disclosed, the patch should be shifted from a scheduled release to a critical release.

Once it has been determined that a patch should be fast-tracked and released as part of the critical
patch release mechanism, a vendor should seek to engage the community of end-users to help
ready a patch. The arguments discussed in section 4.3.3.1 described the benefits a community can
provide, and how keeping the details of a patch secret until release are counterproductive. The
possible help a user community could provide is as limited as human imagination. Whether it
is documentation, vulnerability scanners, workarounds, third-party patches or vital testing, with
the right motivation the skills of technical administrators can be leveraged. The work required in
developing and delivering high quality patches has a high level of commonality across patches.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 95

This is not to say that the vulnerability and related fix are the same, but rather that all patches
require, for example, testing and documentation. A vendor should enumerate the required tasks
and highlight those where community support could provide a benefit. On-line collaboration
tools should be provided to enable the community to engage in the required tasks. Most often
these simply consist of an on-line forum; either a mailing list, forum software, wiki or bug
tracking program such as bugzilla9 can be employed. Peripheral benefits aside, the most specific
and beneficial area of community involvement is in testing. By providing alpha or beta quality
patches for early download, and sharing information on what has been successfully tested, a
community can get involved. If multiple beta versions of a patch are to be released, enhancing
or providing a patch roll-back mechanism would be one area where tools could be developed to
aid testing.

A possible concern is that end-users would not be interested in deploying patches that are not
at final release quality. However, end-users would not be applying beta patches directly to their
systems. An effective patch management policy should always include a comprehensive testing
strategy as discussed in section 3.2.3.4. In such a set-up no patch should be deployed without
any testing, and the same would apply here. However, there are benefits to end-users in getting
involved in testing. By testing the patch on their specific configuration an end-user can ensure
that the patch finally released works correctly for them. In addition, if a patch appears to function
correctly it could be deployed early to machines that warrant it. Since testing has a ’long tail’
(where the initial work is in testing common configurations which apply to many users, whereas
the later tests usually only apply to a few users but require as much work), once testing is com-
pleted on the common configurations, many users could deploy the patch sooner or at least get
a head start on testing. For example, if a vulnerability primarily affects the Chinese version of
a vendor’s product, releasing the patch once the Chinese documentation is ready would allow
the majority of users to start their deployment without having to wait for all translations of the
documentation to be completed. The testing provided by the end-user community would allow
the vendor to test different configurations faster, and the ’release-when-ready’ approach would
allow more end-users to deploy patches, and hence decrease their vulnerability, sooner. The only
cost is a slight increase in the amount of testing performed by some end-users. However, the size
of the community will usually help to ensure no one end-user’s testing time increases dramati-
cally, as the work is distributed and testing performed by one group can benefit many more with
similar configurations. Thus, many end-users could continue as they do now and wait until the
final release of the patch.

9http://bugzilla.org/

CHAPTER 4. VENDOR PATCH RELEASE POLICY 96

This release when ready approach can only help security by speeding the availability of vulner-
ability remedies. Only faulty patches being deployed on production machines would invalidate
this. Thus, the vendor must emphasise that only the final production release of the patch should
be deployed to production machines and all beta releases should be tested in a sand-boxed test-
ing lab. Two advantages then become possible. The first is that testing feedback provided by
the community will speed up the vendor’s testing process, resulting in a patch being available
sooner. The second is that the patch, if it passed some configuration’s testing, could be deployed
sooner to some end-users without having to wait for every configuration to be tested.

The vendor should work hard to ensure all feedback is consolidated into a quality patch as soon
as possible. With proper encouragement, embracing the community prototyping approach will
help to cut down on the window of exposure from disclosure until a patch is available.

4.4.4 Encouraging Delayed Disclosure

Given the benefits evident when a patch release schedule is used for vulnerabilities which have
had their disclosure delayed, it is in vendors’ interest to encourage delayed disclosure of vul-
nerabilities. Much discussion is available in each of the disclosure policies discussed earlier on
how to maintain an amicable relationship between the vendor and security researcher. Vendors
should make an effort to maintain positive relationships with the security community and vulner-
ability researchers in an effort to reduce the instances of instantaneous disclosure. Researchers
too should consider how to best minimise risk to end-users when disclosing vulnerabilities, how-
ever that is outside the scope of this discussion. Two vendors contrast quite differently in their
approach to this. Microsoft has done quite well in building its relationship with researchers over
the last few years. There are few examples of recent public outcries by researchers who feel
the vendor is not providing the patch within a reasonable time-frame. In addition, throwing par-
ties for security researchers at conferences such as BlackHat [171] and outreach events such as
BlueHat [172] have further helped to build a positive relationship. Oracle, on the other hand,
has created controversy by taking too long to fix some bugs [173], and providing poor fixes even
after these extended periods of time [174]. This has resulted in a negative perception of Oracle’s
patch release process and may decrease the chances of researchers working with the firm.

Another approach which has proved quite successful is the bug bounty program run by the
Mozilla foundation [175], wherein $500 is awarded for each previously unknown security bug

CHAPTER 4. VENDOR PATCH RELEASE POLICY 97

discovered in Mozilla software that is privately reported to the foundation. The foundation claims
that the bounty program is working well. As of December 2005 they had awarded $2 500 in
bounties since its inception earlier that year [175].

Additionally, relationships with security researchers can be smoothed by providing a clear and
accessible description of how the vendor’s organisation will respond when vulnerabilities are
reported. Defining time frames in which contact will occur can help to manage the expectations
of the researchers.

4.5 Conclusion

This chapter has provided a discussion around the benefits and disadvantages of implementing
a patch schedule. This discussion has provided a priori arguments on how patch schedules in-
fluence risk and are influenced by disclosure. These arguments have shown that patch schedules
provide two benefits to end-users; the first is a higher quality patch with less chance of a fault,
and the second is a predictable schedule which allows end-users to plan their resources and patch
deployment, reducing the surprise factor and helping to integrate patching as a normal business
process. However, the argumentation also showed that these benefits do not accrue or come at too
high a cost when the vulnerability has been instantaneously disclosed. The patch quality could
be better achieved by releasing patches early as betas and gaining community support (although
this cannot eliminate the ”surprise factor” in these instances, due to the unpredictable nature of
threats). To remedy this situation it is proposed that vendors maintain their patch schedule only
for delayed disclosure. The type of disclosure forms a clear and objective differentiator for which
patches should be scheduled and which shouldn’t. In the past the differentiating factor has been a
subjective threat assessment. In the situation of instantaneously disclosed vulnerabilities vendors
should implement a critical release strategy that releases a beta of a patch to a community as soon
as possible, allowing more testing to occur and providing benefits to end-users and the vendor.

This chapter has provided a discussion on how vendors can better manage the risks patch release
cycles expose end-users to. In the next chapter, practical and available tools, and solutions that
can be used to ease the burden of the patch management policy discussed in chapter 3 will be
discussed.

Chapter 5

Practical Solutions

5.1 Introduction

"I need automation to deploy patches, I do not want automated patch manage-

ment."

– Tim Rice, Network Systems Analyst, Duke University School of Medicine [40]

This chapter provides some technical discussion as to how aspects of patch management can be
improved with technology. The focus is initially on the packaging and distribution of patches,
and secondly on additional measures that can be used to limit the vulnerability of systems until
a patch is deployed.

5.2 Patch Management Software

Patches have existed for as long as software has existed, and they have always been tedious
and difficult to manage (The timeless nature of patch management was introduced in section
1.2). In 1985 Larry Wall made distributing and merging patches to source code easier with
the introduction of his patch utility [26]. In 1993, operating system vendors introduced tools
to help automate the process of keeping software up to date [176, 177]. In 1997 software that
allowed for the management and deployment of standardised patches across multiple operating

98

CHAPTER 5. PRACTICAL SOLUTIONS 99

systems was proposed [178]. Advancing to the present, we see that tools to manage application
updates have become a mandatory part of an operating system, and automated patch deployment
software has become a growth industry with a flood of new patch management products and
tools. A report on the patch management industry showed that sales reached $80 million in
2003 and the number of direct competitors topped the 20 mark[179]. With this many ’solutions’
available, it is tempting to believe the problem of managing patches has been solved. This
section exists to critically classify and analyse the many types of patch management software,
and demonstrate which parts of the patch management process described in section 3.2, have
been and can be automated. This chapter discusses the premise which introduces the necessity
of a patch management policy and demonstrates the failure of ’software only’ approaches. The
premise is that while patch management products fulfill a necessary role, they can only help by
automating tasks necessary to patch management, but never automate tasks sufficient for patch
management. The thorough understanding of the patch management process provided by section
3.2 demonstrates the difficulty of complete automation. In short this section concludes that patch
management is too complex, with too many variables requiring experience and human decision-
making skills for it to be completely automated. To quote Bruce Schneier [42]:

“If you think technology can solve your problems then you don’t understand the
technology and you don’t understand the problems.”

This is not to say that nothing can be automated. Patch management is made necessary by
the nature of the technology, and is an apt example of the productivity paradox [180], wherein
technology introduced to save time has resulted in a new set of time-consuming problems. Thus,
patch management is dependant on technology and can benefit from automation.

5.2.1 Functionality and Classification of Patching Tools

There are, at the risk of understatement, a large number of patch management tools. A reference
collecting reviews of some such products [181] lists 22 companies, some with multiple products,
offering various forms of patch management solution. Each product implements varying levels
of functionality. Most often, patch management products are differentiated simply by whether
or not they utilise agents which must be installed on client machines. This is a simplistic differ-
entiator of functionality, but is mentioned in several places while discussing patch management

CHAPTER 5. PRACTICAL SOLUTIONS 100

software[47, 94, 97, 182]. A discussion on the use of agents is available in section 5.2.2. The
Gartner Group has described nine characteristics that an automated patch management solution
should contain [183]:

• The ability to create and maintain an inventory of systems including information about
installed software and running services. It should be able to discover new systems without
the need to distribute an agent.

• Information on the software and patch revision level of each software component on each
system.

• Automatic evaluation of patch dependencies and tracking of which patches are out-of-date
or superseded.

• A dynamically refreshed patch inventory and ability to classify the patch according to
severity.

• Reports on what patches are needed on which systems by correlating information from the
various inventories. This should take the system’s role into account.

• The solution should provide for system groupings, allowing many machines to be ab-
stracted into one group. The system should also support role-based administration, al-
lowing different parts of the work-flow to be executed by different roles (e.g. Quality
Assurance).

• A scalable patch distribution and installation method, providing for patch roll-back if nec-
essary.

• The system should be cross-platform, especially given number of devices including servers,
network devices such as routers, handhelds, cell phones etc. that need to be supported.

• The solution should leverage existing software for patch management and only introduce
a software agent where necessary.

While these criteria are fairly comprehensive, in an earlier version of this work [98] it was noted
that they are not exhaustive, and several additional ideal characteristics were defined and on
which this list builds.

CHAPTER 5. PRACTICAL SOLUTIONS 101

• The system should be secure. Being able to automatically deploy malicious content to an
entire organisation by compromising one distribution source is a tempting target for at-
tackers [184]. While all applications should attempt to be secure, patch management tools
are security critical applications and, hence have a higher likelihood of being attacked.

• Patches are being issued from multiple vendors, and a patch management solution should
support this to prevent the need for multiple redundant patch management systems.

• The purposes of patches is to remediate vulnerabilities, but there is not always a one-to-
one mapping between vulnerabilities and patches. The system should therefore maintain
as complete as possible an inventory of vulnerabilities, with the ability to test whether
specific vulnerabilities are applicable. This is particularly useful for confirming whether a
patch is effective in mitigating a vulnerability.

• Provide detailed and powerful reporting mechanisms that allow information for risk man-
agement decisions to be gathered easily.

• Integrate with other security mechanisms to minimise vulnerability, particularly during the
window of exposure between vulnerability disclosure and patch deployment.

The words ’functionality’ and ’capability’ are often used as synonyms. However, for the purpose
of this discussion they shall be used to represent two distinct concepts. What we notice about the
list resulting from the combination of the Gartner’s list and our own, is that some points discuss
functionality - for example “an inventory of available patches should be implemented” - while
others discuss the capabilities of that functionality - for example, “the system should be secure”.
’Functionality’ will be used to discuss core features that directly support and enable one of the
policy elements described in section 3.2. ’Capability’ will describe a general feature intended to
modify one or more of the functional components. These capabilities imply extra functionality,
but the scope of the discussion precludes examining them. In the introduction to the policy
framework described in chapter 3, it was noted that patch management integrates with several
other management fields; asset management, vulnerability management, change management,
configuration management, and risk management. Patch management tools demonstrate this
integration. A summary of the policy discussed in chapter 3 is available in both figure 3.3 and
table 3.2. If we distill from this policy the functionality which can be supported by an automated
system, seven distinct areas of functionality are found. These seven primary functional areas
are based on Gartner’s ideal characteristics, automated functionality discussed in chapter 3, the
functionality available in some existing tools, and the author’s own observations. They are:

CHAPTER 5. PRACTICAL SOLUTIONS 102

1. Notification

2. Inventory Management

3. Vulnerability Scanning

4. Patch Testing

5. Patch Packaging

6. Patch Distribution

7. Reporting

These functionality areas are groupings of similar functions. For example, inventory manage-
ment would involve asset inventories, a patch database, an inventory of vulnerabilities etc. With
the functionality isolated from the original list, we can do the same with capability. The resulting
capabilities are:

1. Allow arbitrary grouping and classification of inventories

2. Support patches from multiple vendors

3. Provide a portable cross-platform implementation

4. Focus on security, with regular authentication and authorisation of patches

5. Integration with other security applications

The following sections provide a brief discussion on each functional area. This is intended as a
technical discussion focusing on how automation can support a patch management policy. The
concepts are only briefly introduced, as it is hoped a fuller investigation and implementation of
such a patch management product will be a part of future research.

CHAPTER 5. PRACTICAL SOLUTIONS 103

5.2.1.1 Notification

To ensure that accurate risk assessments can be made (as described in section 3.2.3.2), it is
necessary to receive regular notification of three aspects of the risk equation1:

• Vulnerabilities

• Patches

• Threats

Vulnerability A method of discovering new vulnerabilities and notifying a the patch and vul-
nerability group is required. There are many vulnerability databases, each of which provide some
sort of notification service. The rise of XML-based RSS and ATOM feeds for easy syndication
means that these notifications could easily be integrated into an application, something vendors
should be encouraged to provide. Thus an ’interrupt’ approach can be used, with notification ar-
riving when relevant, as opposed to requiring an administrator to engage in ’polling’ by searching
through busy mailing lists such as BugTraq. For example, the National Vulnerability Database
provides two feeds, one of all CVE vulnerabilities and one with deeper analyses [185]. The Open
Source Vulnerability Database (OSVDB) [52], Secunia [55], ISS X-Force [186] and Security-
Focus [187] vulnerability databases all provide syndicated XML feeds. OSVDB goes one step
further and provides an XML-RPC interface for dynamic real-time queries of the vulnerability
database. There is a large amount of redundancy between databases, and it is preferable to select
one vulnerability database as a source, with recourse to others for further research. There may
be some lag in databases’ adding information on instantaneously disclosed vulnerabilities, but
the automated notification will save a considerable amount of time in comparison to manually
trawling mailing lists.

Patch Similarly to vulnerability notification, many vendors provide XML feeds in order to im-
prove notification of released patches. For example, Microsoft [188], Debian [189] and FreeBSD
[190] all provide XML feeds of their latest patches. The flexibility of XML can easily allow feeds
from relevant vendors to be aggregated and filtered for vulnerabilities affecting an organisation’s

1These aspects are enough to determine risk based on affected system’s criticality, but such an assessment should
still be done by a human agent.

CHAPTER 5. PRACTICAL SOLUTIONS 104

deployed software. For unscheduled patch releases, the automatic notification can allow an ad-
ministrator to be notified immediately and react quickly.

Threat Threat notification is more complicated, due to the intrinsic complexity of the threats.
Some threat notification can be automated, particularly with tools that support correlating and
aggregating information from multiple network sensors. Tools such as Squil [191] or DeepSight
Analyser [192] allow for the information from multiple network monitoring devices to be corre-
lated at one monitoring console. Threat management services such as DSHIELD [58] or, once
again, DeepSight Analyser can be used to detect wide-scale attacks. Specific attacks can be dis-
covered through the use of Intrusion Prevention Systems and honey pots, where the first uses
signatures to detect an attack, and the second can provide insight into an attacker’s methods, or
distract an attacker from real systems. A discussion of defence-in-depth tools is available in sec-
tion 5.3. Whatever monitoring devices are used, the information must be correlated to provide
effective notification. Too many false-positives will result in the sensor being ignored.

5.2.1.2 Inventory Management

This is a broad functionality group, and one of the most critical. Based on the discussions in
section 3.2.3.1 we can see that the three primary inventories required are:

• Asset inventory

• Patch inventory

• Vulnerability inventory

Asset Inventory Section 1.3 highlighted the difficulty of managing many patches for many vul-
nerabilities in many software products and deploying them to many machines. Section 3.2.3.1
discussed the need for proper asset management. This is a function that can benefit greatly from
automation. Without automation, the process of discovering and enumerating all the hosts on
a network, all the software on each host, and the patches (both available and installed) can be
time consuming and tedious. Most patch management tools contain some combination of these
inventory management tools, allowing an administrator both to automatically populate the inven-
tory, and to better organise and track the large amount of information this will create. Advanced

CHAPTER 5. PRACTICAL SOLUTIONS 105

inventory management systems function as reporting tools, allowing ad-hoc queries of the state
of the inventory. These queries can provide valuable information when performing the kind of
verification and reporting described in section 3.2.3.7.

Patch Inventory An inventory of all available patches is a basic requirement of a patch man-
agement system, and will be populated with patches discovered during the notification process.
The primary benefit of this inventory is in helping to minimise the number of patches which need
be reviewed in the patch management process by resolving any internal patch dependencies - for
example, by excluding patches which have been superseded, or automatically resolving the order
in which patches should be installed. Further optimisation will be provided by a cross-correlation
with the asset inventory to exclude patches for software not installed or patches already installed.
Providing user modifiable areas so that testing notes and other discussions about the patch can
be added is useful, particularly if the patch and vulnerability group wants to create a centralised
organisational patch database.

Vulnerability Inventory The purpose of patch management is to resolve known vulnerabili-
ties. Thus, a database of known vulnerabilities is required. This database will be populated with
the high quality vulnerability information available from vulnerability databases. Beyond listing
a CVE number and the affected software, vulnerability entries could include information from
the OVAL project [193] which provides a standardised XML schema [194] for describing how
a vulnerability can be verified. This could be integrated into a vulnerability scanner discussed
in the next section. This database too should correlate information with the other databases to
display how which vulnerabilities affect software actually deployed in the organisation.

5.2.1.3 Vulnerability Scanner

The difficulty with managing vulnerabilities is that they are an unknown risk. It is difficult to
quantify the expected number of vulnerabilities in a product before they are announced. When a
vulnerability is disclosed the possibility of a risk is created. However, whether that vulnerability
is applicable to the specific configuration of an organisation is not clear. Determining this is not
an easy task - which is particularly true in cases when little information is provided with the
vulnerability, or it requires a complex set of pre-conditions to be true. To help an administra-
tor in this task, vulnerability scanners can be used. Vulnerability scanners do not mitigate the

CHAPTER 5. PRACTICAL SOLUTIONS 106

vulnerability (that is the job of the patch) - rather, their purpose is to discover the existence of a
vulnerability.

Given that not all vulnerability disclosures provide enough information with which to generate a
verification mechanism, sometimes the only verification that can be performed is to ensure that
the patch has been correctly installed. This verification should not be a part of the vulnerability
scanner. The vulnerability scanner should be able to independently test for vulnerabilities, and
hence to independently verify whether they have been successfully remediated by a patch.

Network-based vulnerability scanners attempt to interrogate the machine remotely, and should
be used on all machines that are being patched. Local vulnerability scanners usually require the
installation of software on a machine, and can be more time-consuming to set up. Local scan-
ners should be used on critical servers and machines that provide local access accounts. Local
scanners can usually perform a more in-depth scan, involving issues such as configuration vul-
nerabilities, while network-based vulnerability scanners are limited to what the machine presents
to the network, which in the case of some machines may be very little. Vulnerability scanning
can quickly become quite complex, and scanners usually only focus on a subset of functional-
ity. For example, web applications have specific vulnerability scanning requirements that are
different from interrogating open ports for vulnerable services.

5.2.1.4 Patch Testing

Software to support patch testing is notable only in its absence. Virtual machines were discussed
in section 3.2.3.4, and can provide a cheap method for multiplexing several different machine
configurations on one physical machine, saving hardware costs. However, they are limited in
that testing hardware-specific interactions (for example hardware drivers [112]) is poor.

In observing the policy, testing patches is the step likely to require the greatest amount of time,
and is the only defence against threats from faulty patches. Methods which allow regression
testing of patched applications and software to be narrowed in scope could potentially provide a
dramatic speed increase in patch deployment. By tracking the dependencies of the software being
patched, and particularly the dependencies of the patched component, a list of components most
affected by the change introduced by a patch can be generated. Much of this scoping is currently
done manually. For example, if there is a patch to Mozilla Firefox’s handling of JavaScript,
then web applications that rely on JavaScript should be the focus of testing, rather than print

CHAPTER 5. PRACTICAL SOLUTIONS 107

functionality. Applications such as Microsoft’s Strider, or Sun Microsystem’s sowhat [113] can
provide this insight. In addition, a well maintained patch database that includes testing notes
could allow patches with similar dependencies, that are re-issued or linked via a dependency can
help to prioritise tests that previously displayed problems.

5.2.1.5 Patch Packaging

Due to the proliferation of package managers and their related patch formats such as Debian’s
.deb, RedHat’s .rpm, FreeBSD’s ports and Microsoft’s .msi there is a lot of functionality that has
been placed in the patch distribution format, or package. Several aspects of patch packaging are
discussed below.

Dependency Tracking Many of the complexities of patch dependencies can be automatically
resolved by providing enough information in the packaging of the patch. There are several
different types of dependencies that could occur. The dependency types used by Debian’s .deb
package format are used as an example [73], as the dependencies between thousands of open-
source projects are difficult to maintain, and Debian’s APT has a history of performing this task
well.

• Depends - package A depends on package B if package A cannot run without without
package B. In the case of source packages this is further decomposed into packages re-
quired to compile package A (build dependency) and packages required to run package A
(run-time dependency). This is a hard dependency.

• Recommends - package A recommends package B if the package maintainer decides that
most users would only want package A with the functionality of package B.

• Suggests - package A suggests package B if package B is related to or enhances the func-
tionality of package A.

• Conflicts - package A conflicts with package B when package A cannot run with package
B installed. This is often combined with ’Replaces’ as conflicts usually occur between
packages providing the same functionality.

CHAPTER 5. PRACTICAL SOLUTIONS 108

• Replaces - package A replaces package B when package A contains similar files to package
B that would result in the files from package B being replaced or overwritten if package A
were installed at the same time.

• Provides - package A provides package B when package A has the same files and function-
ality as package B. This is an abstraction of functionality from a package, as often several
packages exist to fulfil one purpose.

This dependency tracking needs to be implemented in a package management solution, and
should not be implemented in the specific patch package. However, the quality of dependency
tracking is directly related to how much information is provided by the actual patch package. An
alternative would be to provide the dependency information through another channel, and min-
imise the patch package. Either way, detailed dependency information will ensure that patches
are installed smoothly and in the correct order with conflicts minimised.

Binary Patching Once the patches are fetched, the dilemma of whether to replace the entire
binary or use a binary patch is presented. Microsoft used binary patching techniques in the
past, but decided to stop due to the unpredictable behaviour created by differing configurations.
Investigation into binary patching algorithms will be conducted and an option to either patch the
binary or replace it in its entirety will be given to the administrator. The advantage of binary
patching is a significantly reduced distribution time, especially for the often small changes that
a patch performs. The created patch and relevant documentation will then be stored in a patch
database. This is separate from the systems database as it could be beneficial to have this database
available to the Internet as a whole. This would allow organisations to learn from one another’s
patching techniques and reduce effort. This is best summarised in a quotation from Mykolas
Rambus, CIO of WP Carey, “It would take an industry body - a nonprofit consortium-type setup-
to create standard naming conventions, to production test an insane number of these things, and
to keep a database of knowledge on the patches so I could look up what other companies like
mine did with their patching and what happened.” [40] It is hoped that instead of a consortium,
a community could be created to share their experiences.

Traditionally, patches are distributed by packaging files to be replaced, instead of packaging the
differences between the two versions. The advantage of the traditional method is that the same
package can be used to upgrade from any (or many) previous versions or for new users to perform
a fresh install. Thus, the software maintainer’s job is made easier. However, if the difference

CHAPTER 5. PRACTICAL SOLUTIONS 109

Patch Tool
bzip2 compression xdelta bsdiff

Binary bytes percent bytes percent bytes percent
gaim 317 699 100% 3 877 1.22% 782 0.25%

gaim-remote 4 979 100% 157 3.15% 140 2.81%

lsusb 20 673 100% 17 837 86.28% 15 731 76.09%

usbmodules 5 040 100% 3 815 75.69% 2 944 58.41%

BSD ls -> GNU ls 36 026 100% 36 919 102.48% 37 604 104.38%

Table 5.1: Table comparing file sizes of different methods of distributing the same file.

Figure 5.1: Graph of the effectiveness of binary patch tools

from one version to the next is only a small change, the user will still be forced to download a
full copy of the new software. An alternative is to package the incremental difference between
the two files: this would result in smaller patches, particularly when only a small change has been
made, as is often the case with security patches. Below is a comparison of two binary patching
tools, Xdelta [195] and bsdiff [196]. As can be seen in the table 5.1 and figure 5.1 drawn from an
earlier work [114], the binary patches provide anywhere between a 90% to 25% reduction in size
compared to a full binary download. The last example was a test case in which two completely
different files were used (i.e. there were no similarities between the two files).

However, there are some disadvantages to binary patches. A binary patch can only patch from

CHAPTER 5. PRACTICAL SOLUTIONS 110

one specific version to another. Thus if the end user is likely to have several different versions
of a vulnerable software package, multiple binary patches may have to be distributed. This can
sometimes make a binary patch larger than a traditional patch (this is certainly the case with
Microsoft’s binary patching [197]). With careful package management, this risk can often be
mitigated by tailoring the delivered patches to the systems requesting them (i.e. a semi-intelligent
patch tool) or by attempting to keep software versions in lock-step. The last disadvantage is that it
is harder for a software maintainer to manage binary patches with the release of one new version
requiring several binary patches to handle users who are not running the immediately previous
version, as patches will be required for each version up to the current. This process that can be
fairly well automated.

Patch Authentication A vendor-provided patch provides a central point of failure for every
application deploying it. Once it is distributed to a client’s own centralised patch deployment
system, a central point of failure persists for all machines within that organisation. Thus, the
patch needs to be authenticated every time it is distributed. This is quite easily solved using
public key cryptography. Providing a public key with which users can verify communications
and patches signed by the vendor’s private key can help ensure that patches are not tampered
with. A model of how this can practically be achieved in open-source projects is provided in the
Strong Distribution HOW-TO [198], and is expanded on by Sohn et al. [199]. However, practical
problems often occur when users do not update their stored copy of the vendor’s public key,
or when vendors do not correctly sign patches [200]. If we assume that the vendor is behaving
correctly, many of the tasks for authenticating packages can be automated - and should be at every
point possible, particularly once it has been downloaded from the vendor to a client machine.

Patch Back-Out Providing an effective back-out mechanism to allow changes introduced by
patches to be undone would go a long way to minimising the potential threat of a faulty patch.
For some patches this can be quite a trivial process, in which the updated files are merely reverted
to their original form. However, in some cases changes introduce features that are not backwards-
compatible. For example, if a database schema is changed, any new data added to the database
requires considerable effort to converted to the previous schema. Several vendors provide roll-
back mechanisms, though these are not always used.

CHAPTER 5. PRACTICAL SOLUTIONS 111

5.2.1.6 Patch Distribution

Most current solutions distribute their patches via either a single server or several servers, de-
pending on the size of the organisation. This method is very inefficient and subject to dangerous
denial-of-service (DoS) attacks. The advances in peer-to-peer distribution should not be ignored,
and protocols such as Bittorrent [201] or other rapid distribution methods could provide benefits
in mitigating DoS attacks against central distribution centres. This will have the advantage of a
reduced bandwidth load on the distributing server [202], and provide greater security as many
more machines will need to be compromised to distribute a malicious binary (assuming the initial
upload is correctly authenticated). The public key infrastructure discussed in section 5.2.1.5 can
be implemented. The server component can be given a server root key whose public component
is published to the network. This would allow for each patch to be signed by the root server’s
key and the agent to verify this by checking against the published root key. Additionally, de-
ployment can easily be scheduled to occur at certain times appropriate to the organisation, even
when there is no one present, allowing unattended installs of less critical patches to occur with
minimal interference.

5.2.1.7 Reporting

Before a patch can be applied to mission critical servers, the patch needs to be tested with the
current system configuration, and processes for removing the patch are usually drawn up. This
can take a large amount of time to troubleshoot, which often leaves the system administrator with
a dilemma: to deploy the patch and risk losing critical services, or not deploy and risk a security
breach. To resolve this, a system administrator requires more information on the possible effect
an exploit could have on his organisation. Reporting is thus a major advantage of such a project,
due to the decision-making benefits.

Reporting should involve extensive correlation of information between then vulnerability, patch,
and hosts’ inventories. This should be extended with information gleaned during the deployment
process, such as patch and vulnerability verification information. The ability to create ad-hoc
queries into this data would allow an administrator to rapidly and accurately obtain data relevant
to the risk management decision-making. Additionally, other tasks such as metrics and trends
can be extensively supported by a well implemented reporting function.

CHAPTER 5. PRACTICAL SOLUTIONS 112

5.2.1.8 Summary

Table 5.2 provides a summary of the functional areas and the tasks performed in each.

5.2.2 Architecture

“The entire agent vs. agentless debate [is] a red herring.”

– Mark Shavlik, CEO of Shavlik Technologies [182]

A brief discussion on the nature of agent-based versus agentless patch management solution is
included here only because it is discussed in nearly every paper on the subject [47, 94, 97].
However, we believe that this debate is essentially a propaganda war between various vendors
attempting to sell their product. The quote at the beginning of this section has been deliberately
taken out of context. It is taken from a paper entitled Security Patch Management: Breaking New

Ground [182] published by Shavlik, vendor of the HFNetChkPro patch management solution.
The title does not reveal that the paper is actually a discussion on the agent versus agentless de-
bate, and sides strongly with agentless technology. It is not surprising to learn that HFNetChkPro
is an agentless solution. The paper contained a number of unsubstantiated and demonstrably un-
true claims, and of its meagre five references, one refers to semantic web intelligent agents, and
appears to be quoted incorrectly. The author mistakenly compares deploying patches with agent-
less technology to deploying agents and patches with agent-based technology - even though the
agent would only need to be deployed once. We believe that papers such as this, and the resulting
marketing hype as vendors attempt to advertise their selectively agent or agentless solution as the
best architecture, have contributed to the amount of time that has been devoted to this debate.
Agent and agentless solutions are both necessary for a patch management solution, and many
tasks required for patch management can be done using either.

5.2.2.1 Agentless

And agentless, or non-agent, architecture should technically be able to operate without utilis-
ing any software installed on the client machine, thus limiting the server to things such as blind
vulnerability scans. However, in reality “agentless” usually refers to the fact that no additional
software is required to be installed on the client, and standard remote administration tools are

CHAPTER 5. PRACTICAL SOLUTIONS 113

1. Notification

• Vulnerability
• Patch
• Threat

2. Inventory Management

• Network hosts inventory
• Host software inventory, including patch level

• Available patch inventory with dependency tracking
• Vulnerability inventory

3. Vulnerability Scanner

• Remote network scanner
• Local host scanner

4. Patch Testing

• Virtual Machines
• Test scoping

5. Patch Packaging

• Authentication & Authorisation
• Compression
• Back-out

6. Patch Distribution

• Scheduler
• Distribution

7. Reporting

• Correlate information sources (hosts, software, patches, vulnerabilities, verification,
time)

Table 5.2: Patch Management Automation

CHAPTER 5. PRACTICAL SOLUTIONS 114

used. The use of these administration tools amounts to the same essential functionality as an
agent-based architecture. The upshot of this is that it encourages the use of standards, as default
remote administration tools are used, instead of proprietary communication protocols. However,
given that the agentless solutions often only use the remote administration capability to deploy
executable content (an agent), this is limited, and the waters dividing agent from agentless soft-
ware become murky indeed. Given the difficulty in drawing a clear distinction between agent
and agentless software, and the inadequacy of the “any additional software required” definition,
we will provide a slightly different, but functionally useful definition.

Agentless technology is limited to pushing patches to clients - an ’interrupt’ approach wherein
patches are pushed when they arrive, rather than a pull-based ’polling’ approach, in which clients
regularly query the server for new patches. Pushing patches is limited in situations where ma-
chines are not connected to the network during the patch deployment, requiring the server to
perform the same ’polling’ as an agent, albeit in reverse, to detect when disconnected machines
re-join the network. Conversely, this approach is quite useful in the case of new machines join-
ing the network that might not have had an agent deployed to them yet, or in situations where an
agent has failed, possibly due to a conflict caused by a new patch. Thus, an agentless approach
is both a necessary and sufficient part of an effective patch management solution.

5.2.2.2 Agent

With agent-based architecture there is a central server which can serve patch files and an agent
that is installed onto the client machines to perform local tasks. The amount of work performed
by the server and the clients varies greatly depending on the product’s feature set. Agent-based
patching can use either push (interrupt) or pull (polling) type patching. With agent based patch-
ing, when patches are pushed to clients the server initiates a connection to the client machine’s
agent, instructing it to deploy the patch. When patches are pulled, the client machine’s agent will
initiate the connection to the server, copy the patch, deploy it and report back to the server. Push-
ing patches allows a server to push patches to clients as soon as the patch is available. This can
help in reducing the time to patch. However, if a machine does not receive the push instruction,
the patch might not get installed. This is particularly pertinent with mobile devices which often
pose an increased risk as they allow malware to piggyback its way past a firewall. With pull-
based patching, the mobile device can ’check-in’ when it is back within the organisation instead
of having to wait until the next patch release cycle. Ideally, an agent based solution should utilise

CHAPTER 5. PRACTICAL SOLUTIONS 115

both methods to minimise patch deployment time. Patches can be pushed as soon as they are
available for deployment, and agents can check-in to pull patches at regular intervals, or during
a client-side event such as a reboot or rejoining a home network.

Thus, agent based technology gives you more options and more control. It also prevents creden-
tials from being transferred around the network and reduces the amount of bandwidth required.
Difficulty in installing agents can be avoided by including the agent in standard baseline images,
or using remote administration tools to deploy them. However, agent-only architectures cannot
protect new machines on the network, or in situations when the agent fails, and therefore cannot
be sufficient as a patch management solution.

Thus, a combination of agentless and agent-based architectures is ideal for a patch management
solution.

5.2.3 Available Tools

Given the large number of tools claiming to be capable of managing the many aspects of patch
management, an in-depth review of each one is outside the scope of this research. In some earlier
work, an in-depth review of Microsoft’s WSUS patch management product was conducted, and
this is included as appendix B. This section provides a brief description of the evolution of
various forms of patch management tools, and a classification of a handful of popular tools
based on the functionality and capabilities described above.

5.2.3.1 Evolution

Generally, patch management software fits into one of five categories. These categories appear
to have arisen as software that provided an aspect of the patch management process bolted on the
ability to deploy patches, with software actually developed to manage the entire patch manage-
ment process (4) the only noticeable exception.

1. Vulnerability Scanner

2. Configuration Managers

CHAPTER 5. PRACTICAL SOLUTIONS 116

3. Package Manager

4. Original Patch Managers

5. Defence in-depth tool

The last category is usually consists of additional defences that can be used, and does not include
tools directly related to patch management. These tools will be discussed in section 5.3.

Vulnerability Scanners These tools started off simply as vulnerability scanners and realised
the need to provide the option of remediating discovered vulnerabilities. Thus, a method for
pushing patches to machines was added. These tools are usually agentless solutions that started
off as remote network vulnerability scanners. An example of this type of component is Shavlik’s
HFChkNet which started off as the engine used for vulnerability scans in Microsoft’s Baseline
Security Analyser (MBSA) scanner [203]. However, Shavlik has since split its products into
many separate products, each implementing some specific functionality, and thus GFI Languard
[204] may be a more appropriate example.

Configuration Managers These tools attempt to centralise the administration of all aspects of
machines on a network or in a domain. Examples of these include Microsoft’s Systems Man-
agement Server (SMS) [205], IBM’s Tivoli [206] or Configuresoft [207]. These are usually
expensive agent-based solutions that already performed many of the tasks necessary for patch
management, such as asset and change management, that have since expended to include patch
management. The advantage they provide is that one agent can be used for a variety of tasks
instead of managing several agents.

Package Managers Package management has traditionally been driven by the unix operating
systems which have needed to develop systems to manage the large number of third-party soft-
ware they require. Each operating system has its own package management system. Microsoft’s
SUS and later incantation, WSUS [208] is essentially a package manager with some extra func-
tionality. Package managers have traditionally focused almost exclusivley on the patch inventory,
packaging, and distribution, but become patch managers when they branch out to include some
of the other functionality described in section 5.2.1. Examples of this include Debian’s APT
[73], and RedHat’s RPM [176] systems.

CHAPTER 5. PRACTICAL SOLUTIONS 117

Original Patch Managers This class of software describes tools that have been recently devel-
oped with the original intention of fulfilling the needs of patch management. It is not surprising
that this is the largest category of patch management tools. Some examples include UpdateEx-
pert, Patchlink Update [209], BigFix [210] and Ecora Patch Manager [211].

5.2.3.2 Examples

Some examples of each type of product are given below.

• Vulnerability Scanner

– GFI Languard [204]

• Configuration Managers

– IBM Tivoli [206]

• Package Manager

– Debian APT [73]
– FreeBSD Ports [212]
– Microsoft WSUS [208]

• Original Patch Managers

– BigFix [210]
– Patchlink Update [209]

Table 5.3 indicates which of the broad functionality areas each product fulfils, though the quality
and depth of the implementation is not represented. The feature set of each category is made
somewhat clearer, but in general many of the patch management tools automate similar func-
tionality. All of the tools implemented patch notification, but Tivoli was the only one to correlate
information from threat sensors. Tivoli provided almost all of the functionality of the other prod-
ucts, nicely demonstrating the scope of configuration management tools. All of the tools apart
from the package managers provide vulnerability scanning, however BigFix and Patchlink do

CHAPTER 5. PRACTICAL SOLUTIONS 118

this with third-party tools such as Nessus that they integrate with their product, while Tivoli and
GFI appear to provide their own scanners. Vulnerability scanners are available for WSUS-, Apt-,
and Ports-based systems, but they are not integrated into the tool. Similarly reporting tools and
host databases are available for Apt and Ports, but are not integrated. BigFix, Patchlink, APT
and Ports provide their own patches after testing patches released by other vendors, while WSUS
is a vendor-specific tool. GFI and Tivoli use the vendor patches as they are released. BigFix’s
and Patchlink’s patches are available through a paid subscription service. It is interesting to note
that none of the tools provide support for automating testing. Some allow for a ’test’ group to
be created and patches deployed to them, but this does not provide any functionality or actually
help with the testing.

We can see that there are still opportunities to develop the functionality of patch management
tools.

Notification Inventory

Management

Vulnerability

Scanner

Testing Packaging Distribution Reporting

Possible Values (P, V, T) (H, P, V) (Y | N | TP) (Y | N) (Y | N) (Y | N) (Y | N)

Tivoli P, T H, P, V Y N N Y Y

BigFix P H, P TP N Y Y Y

Patchlink P H, P TP N Y Y Y

GFI P, V H, P, V Y N N Y Y

WSUS P H, P N N Y Y Y

Apt P P N N Y Y N

Ports P P N N Y Y N

Key • H - Host

• P - Patch

• T - Threat

• V - Vulnerability

• TP - Third Party

• Y - Yes

• N - No

• (a, b) - a and b

• (a | b) - a or b

Table 5.3: Comparison of Patch Management Tool Functionality

CHAPTER 5. PRACTICAL SOLUTIONS 119

5.3 Defence in-depth

Defence in-depth is a security strategy pioneered by the military, wherein multiple layers of se-
curity are used to minimise the amount of damage caused by an intrusion [30]. In a broader
context it refers to every aspect of information security where a combination of people and tech-
nology are used to form the multiple layers. In the context of patching it will be used to refer to
additional techniques that can be used to mitigate the threats faced by machines with unpatched
vulnerabilities. While testing occurs the organisation is left vulnerable, and is often in a situation
where it cannot turn off a critical service. Here additional technologies designed to reduce the
effectiveness of an attack, or at least to allow for the attack to be discovered, can be utilised to
minimise the consequences of a successful exploit.

5.3.1 Firewalls and Anti-Virus

Firewalls and anti-virus solutions are a well understood solution to some attacks. However, they
are often fairly inadequate alone. The failings of firewalls were described in section 1.3. The rise
in use of web-based applications and the multiplexing of several services over the HTTP port
means that a firewall is only useful in certain select circumstances. A firewall should be deployed
however, and ports for commonly attacked services such as Windows RPC or OpenSSH should
be firewalled off if possible. Additionally, services only required by a select group of people,
for example firewall management interfaces, should limit the machines allowed to connect to the
port. If a port can be completely firewalled off, then questions as to whether the service is needed
at all should be raised.

Anti-virus solutions can help to mitigate attacks. Given their near ubiquitous deployment on all
end-user machines, they can help to combat the rise in malicious software that relies on confi-
dence tricks and minimal user interaction to spread. Keeping signatures up-to-date can help to
prevent against known malicious software attacks. However, anti-virus solutions that rely solely
on signature-based detection are becoming less effective. Statistics provided by the malware
submission service, VirusTotal consistently show significantly more failures in detection than
successes [213]. For example, statistics for seven days in December 2005 showed 261 success-
ful detections compared to 14 285 failures. Malware variants can often be rapidly created and
discreetly spread, making it difficult for malware analysts to discover and analyse each piece of
malicious software rapidly. Additional techniques, such as heuristics and policy controls, can

CHAPTER 5. PRACTICAL SOLUTIONS 120

help to catch new forms of malicious behaviour [214] by detecting many of the results used by
malicious software, instead of the specific technique. For example detecting a browser trying to
execute code stored in a data segment assigned to a picture could pick up on any new malware
that attempts to use this technique. Thus, when a patch is being tested, signatures for potential
attacks can be distributed to client machines to provide short term protection against the threat.

In some cases the anti-virus solution can be effectively coupled with a proxy to provide some
protection from the crunchy firewall problem [41] in the form of content filters. An example of
such a tool is WebMarshal [215]. With the rise of processing power it is likely that many more
application-specific proxies will become available for services multiplexed over HTTP. Both the
use of firewalls and anti-virus software is strongly recommended. While neither will provide
absolute protection, they can sometimes completely block a threat and or minimise it.

5.3.2 Intrusion Detection/Prevention Systems

There are both host and network Intrusion Detection Systems (IDS) solutions. The focus here
is on network IDS’s to mitigate attacks conducted over the internet. Intrusion detection systems
IDS’s operate in a similar manner to anti-virus solutions. Usually, a set of signatures are used
to detect signs of malicious activity or heuristics, and policy controls are used to detect new
attacks. Signatures are currently the most commonly used method of detection, given the diffi-
culty in determining ’regular’ use of diverse network protocols. These signatures will be used
to look for patterns in network traffic and alert when they are discovered. However, IDS’s have
a notoriously high rate of false positives [216], and can require extensive tuning to provide an
accurate reporting rate. IDS signatures are easy to create, usually only consisting of a few lines
of information, and are often available very soon after the detection of a malicious application.
The simplicity of the signatures means that they can be rapidly tuned to lower the false positive
rates. Similarly to anti-virus solutions, when a patch is being tested the signature can be used to
monitor for any attacks.

An IDS can be turned into an Intrusion Prevention System (IPS) by integrating it with a firewall
to block traffic detected as malicious. This could be extended to drop all traffic from hosts
detected to have sent malicious traffic. This should be used cautiously, as malicious traffic could
be sent from a spoofed address, potentially causing traffic from a legitimate host to be dropped,
effectively causing a Denial of Service attack [47]. However, in the short term (with careful

CHAPTER 5. PRACTICAL SOLUTIONS 121

monitoring) this can provide an effective tool to minimise the chance of a threat successfully
exploiting an unpatched vulnerability.

An extension of IDS systems are block lists [217]. These are lists of addresses known to be
involved in malicious activity. They can be used to limit the number of attacks from known bad
sources. However, block lists are easily circumvented by moving an attack to a new host. Given
the large number of zombie machines theorised to be compromised by attackers, this is often
fairly trivial. However, they can be of use in the case of web-based threats in which specific sites
are distributing malicious content.

5.3.2.1 Virtual Patching

Some vendors are marketing a defence in-depth tool providing ’virtual patching,’ most notably
BlueLane Technology’s PatchPoint solution [218]. The basic working of the technology appears
to be that of an IPS with the additional feature of being able to ’correct’ traffic. This amounts to
stripping out the known bad part of malicious network activity and forwarding it down the wire.
While the marketing hype promises this as a final solution to the woes of stop-gap defences
during patch testing, we believe these claims to be false. Correcting traffic is a two step process.
First malicious traffic must be detected, then it must be corrected. This is the exact process used
by an IPS, where first malicious traffic is detected and the ’correction’ is a total block of the
request. Thus, the only difference between ’virtual patching’ and an IPS is the additional step
of trying to correct the traffic. This is arguably a bad approach. The fallibility of signatures
has already been mentioned. A signature only provides detection for known bad activity. Even
in these cases this can be a difficult task. For example, during the recent WMF vulnerability,
malicious WMF files were made difficult to detect through the use of gzip compression and
header-padding tricks [219]. Thus, a malicious request may have more to it than a signature
can detect, and a good strategy is to block the entire request if part of it has been discovered
as malicious. Trying to correct the request and forwarding it is similar to going to the effort of
detecting know criminals, then removing their visible weapons and letting them into your jewelry
store. Ptacek [220] provides a nice comment on the matter:

If your in-line network security device claims to provide "virtual patching", the
box must use the actual binary patch from [the vendor] to do it.

CHAPTER 5. PRACTICAL SOLUTIONS 122

5.3.3 Other Hardening

There are a plethora of other defence in-depth steps that can be taken to harden the configuration
of a machine and its services. Some examples include host-based IDS, cryptographically signed
executables, router white lists to limit worm infections, and configuration hardening. This is a
broad area with the potential for much innovation that can be leveraged to extend the defence
in-depth concept to buy an administrator more time to test patches.

5.3.4 Software Selection

Given that patch management will become a significant and regular activity if properly imple-
mented, minimising the number of patches required by deployed software will be of both a
security and a cost benefit. By making good choices when software is first being deployed, high
maintenance and patch costs can be avoided later when the cost of migrating away from the soft-
ware is too high (some software is patched more than others). Unfortunately, it is not as simple as
figuring out which software has fewer patches, as this is no indication of actual security. Older,
more mature software, will often have a larger user base and a correspondingly large support
community, which often results in more people finding vulnerabilities, and due to its popularity,
more people looking for vulnerabilities. This may result in more patches being released, making
it appear poorly coded, while it is objectively more secure than a new software project fulfilling
the same functionality without the same level of security review.

An organisation then has two choices. The first is which software package should be used, given
multiple products. The organisation should conduct a security review of each product, this re-
view should be more in-depth than counting the number of patches and vulnerabilities announced
for each product. If possible, the types of vulnerabilities, frequency of serious vulnerabilities,
and patch response time should be included. Once this decision is made there is a choice be-
tween which version of the software should be used. This choice is less frequently made, as
most organisations deploy the latest version. However, this is not always the best choice. It is
hypothesised that older software that fulfils all necessary business and technical requirements
and is still actively maintained2 will have fewer announced vulnerabilities and will, in fact, be

2Actively maintained within acceptable limits. For example Microsoft Windows 98 was until June 2006 still
being unofficially maintained, and patches were released slowly, placing it outside the definition of ’actively main-
tained’.

CHAPTER 5. PRACTICAL SOLUTIONS 123

more secure. To test this, vulnerability data for the Linux kernel was collected from the Com-
mon Vulnerabilities and Exposures List [5] and analysed. The results seen in table 5.4 and figure
5.2 demonstrate that older kernel versions have fewer vulnerabilities over time, and hence fewer
patches to fix those vulnerabilities, than their newer counterparts. This is due to three primary
factors:

• There is less functionality and code with potential security holes.

• Older software has been subject to more and longer security review

• There is less interest in discovering vulnerabilities in older software

Year
Kernel Version 1999 2000 2001 2002 2003 2004 2005

2.2 3 4 17 2 1 0 3

2.4 n/a 1 6 5 12 30 11

2.6 n/a n/a n/a n/a 2 33 35

Total 4 6 19 7 15 50 40

Table 5.4: Table depicting vulnerabilities in the different Linux kernel versions over time
Source: CVE [5]
Note: The total columns do not add up correctly as some vulnerabilities affect multiple kernel versions or non-

standard kernel patches. For example in 2004 there were 13 vulnerabilities which overlapped and in 2000 one

vulnerability was in the trustees kernel patch and in 1999 one vulnerability was in the 2.0 kernel version which isn’t

included. These are included in the total to provide an idea of the general reporting trends in the linux kernel.

Thus, if the security of an older software version is still being maintained (within acceptable
limits) and provides all required functionality, it is often better to use the older version over the
newer version, as this will reduce the number of patches required without adversely affecting
security. This analysis is specific to a well known project with a large user and developer base,
such as the popular operating systems and server software (e.g. Linux, Windows, Apache).
However, this behaviour is not intrinsic and summaries of vulnerability numbers are no substitute
for thorough analysis.

CHAPTER 5. PRACTICAL SOLUTIONS 124

Figure 5.2: Graph of the number of vulnerabilities in different Linux kernel versions per
year.
Source: CVE [5]

5.4 Conclusion

This chapter has focused on the technical aspects of patch management. First, a description of the
functional areas where a patch management policy can benefit from automation was provided.
A brief discussion on each of these aspects was then provided, pointing out where specific tech-
nologies could be used to improve on current patching tools. After this, a brief analysis of some
existing patch management tools was conducted. With the functionality and capabilities model
developed in the beginning of the chapter, it was possible to asses existing patch management
tools, and it was found that while some provided invaluable automation, a variety of tools is still
required, with no solution providing the ’silver bullet’. This chapter further concluded that only
a subset of a patch management policy can be automated, but that this automation is necessary to
the task. In addition, there is still room for much technical improvement in automated patching
tools, particularly in providing tools to make patch-testing easier. The chapter then turned to
some additional technical discussion, focusing on other activities and technologies that can be
used to improve the patching process. Some defence in-depth techniques were discussed that
could allow an administrator to deploy stop-gap defences while a patch was being tested. These
defences are not always completely effective, but can help minimise some threats.

CHAPTER 5. PRACTICAL SOLUTIONS 125

This chapter provided a description of actual tools that can be used in assisting with patch man-
agement, thus bringing us to the end of the analysis of this thesis. In the next chapter brief
summaries and conclusions are provided for each previous chapter.

Chapter 6

Conclusion

6.1 Introduction

In the introduction to this thesis the objectives of this research were put forward. This researcher
believes that these objectives have been largely been met. This chapter provides a summary of
the work that has been presented, with a focus on how the described objectives were achieved.
Hindsight allows for a clearer perception of the activities undertaken during the period of re-
search, and some of the problems encountered are discussed in this context. Finally, further
work that has been identified as useful is discussed.

6.2 Objectives

Several objectives were discussed in chapter 1. It was hoped that some sense could be brought
to the patch management debate. This sense is sorely needed given the growth of security as
an industry, and patch management in particular, where vendors have a commercial interest in
hyping threats and products. To this end, seven objectives were proposed, and are repeated here:

1. An analysis of vulnerabilities, exploits and patches by discussing the vulnerability life-
cycle.

126

CHAPTER 6. CONCLUSION 127

2. An analysis of vulnerability, exploit and attack trends.

3. An analysis of patches and their problems.

4. A discussion on how to implement a patch management policy.

5. A discussion on how vendors can implement a scheduled patch release policy.

6. A discussion on patch management tools and automating parts of the policy.

7. Tools to help automate and integrate parts of the policy.

Barring the last, it is believed that these objectives have been achieved. The first objective was
dealt with in section 2.2, where the conclusions of several sources based on their analysis of
empirical evidence were synthesised to produce the most complete understanding of the current
vulnerability life-cycle that this researcher is aware of. The second objective utilised this new
understanding to discuss the trends that are currently modifying this life-cycle. In section 2.3
several trends indicating that the risks related to vulnerabilities in software were demonstrated.
The number of vulnerabilities is increasing, the number of attacks is increasing, while the amount
of time available to an administrator to remediate these vulnerabilities is decreasing. This analy-
sis fulfilled the second objective and provided a justification as to why patches are necessary and
need to be expediently deployed.

The third objective was to analyse why patches appeared to be difficult to manage and install.
Section 2.4 discussed several specific problems administrators face when deploying patches
were. Two examples were then provided in section 2.4.6, where several of these problems were
demonstrated. This objective provided a justification as to why patch management is necessary.

The fourth objective was to derive a solution from the understanding now developed. Originally,
this objective consisted in a stronger form of objective seven, and it was naively believed that a
software tool could effectively manage the problems relating to patch management. However, it
was modified to its current state in chapter 3, where an in-depth discussion is provided on how an
organisation can develop a patch management policy. In a drastic shift from the original objec-
tive, this discussion remained technology-agnostic, and focused on the procedures that could be
employed. Section 3.2.3.2 provided an introduction to risk assessment. This was found to be the
single most useful part of the derived policy. It was discovered that the largest problem facing
patch management was a lack of information with which to assess risks. The risk assessment
discussed influenced the rest of the research greatly.

CHAPTER 6. CONCLUSION 128

The fifth objective came about due to theome vendors’ shift to a scheduled patch release cycle,
and the threat of this cycle becoming an industry standard (Microsoft in particular drove much
of the inquiry into patch schedules). Within the context of the vulnerability life-cycle described
in the earlier chapters, it was clear that an end-user policy dealt with only part of the group
relevant to patch management, and that vendors could make a significant difference to any efforts.
Chapter 4 thus provided an argumentative analysis of scheduled patch release policies. It was
concluded that a patch schedule only works in a situation of delayed disclosure. In the cases
of instantaneous disclosure described in section 4.3.3.1, vendors should release beta-patches
and benefit from community collaboration and testing, which will make effective vulnerability
remediation available sooner.

The sixth objective went through several iterations before being met in its final state. Some
confusion as to how to relate the functionality of an ideal patch management tool to the policy
proposed earlier existed. This confusion was overcome, and section 5.2.1 provided a discussion
on how parts of the patch management policy could be automated. This was then used to classify
a subset of current patch management tools in section 5.2.3, demonstrating that patch manage-
ment tools don’t support every necessary step in a patch management policy. In the next section
(5.3) cast the net a bit wider, discussing defence in-depth tools that could be used to defend
the organisation while patches were being tested. This completed the solution objectives to the
problems discovered in objectives one to three.

The need for integration of several management areas and information sources in a patch manage-
ment policy is critical. It was hoped that tools could be developed to help provide the automation
described in the previous objective. However, a lack of time and scope precluded this. This will
be further discussed in the ’future work’ section below.

6.2.1 Summary

Thus, it is believed that the objectives were met. The problem and its nuances were discerned,
and solutions that responded to and mitigated these problems were developed.

CHAPTER 6. CONCLUSION 129

6.3 Problems and Solutions

The specific problem this research tried to address was to find workable solutions to the problems
presented by patch management. Specifically, the problem was that of vulnerability manage-
ment: in the face of increasing threats and vulnerabilities, how can patches be used to effectively
remediate these vulnerabilities and render the threats moot. The related problem was that of the
patch paradox - that without a patch an asset is vulnerable to attack, and with a patch the asset is
vulnerable to failure.

The developed solution presented in chapter 3 was to produce a realistically implementable pol-
icy guide with which organisations could develop their own comprehensive patch management
policies. This policy took into account the many variables present both in vulnerability/attack
scenarios and those in the average organisation. Often, administrators have to deploy patches to
many machines with diverse requirements that can have complex effects on business processes.
The policy focused on risk management in section 3.2.3.2 as a method for directing decision
making. The second part of the solution presented in chapter 4 was less direct, but involved a
discussion of how vendors could implement a scheduled patch release policy that responded to
the threat trends discovered, better integrated with organisation patch management policies and,
most importantly, reduced the likelihood to the end-user of exploitation.

6.4 Future Work

There were many aspects of this work that could be branched off into a thesis of their own.
For example, several anti-virus companies make their money by focusing solely on virus-threat
notification and mitigation, which were but small sub-components of this discussion. Some of
the work related to this subject which could be undertaken in the future is discussed below.

6.4.1 Threat Management

Chapter 2 found it very difficult to gain an accurate picture of current threats, or provide com-
prehensive threat management resources. It is very difficult to discern current threat activity.
Most threats mentioned are those attacking on a very large scale, where the scale of the attack

CHAPTER 6. CONCLUSION 130

is directly related to its amount of coverage. However, a small scale targeted attack could po-
tentially do more damage to an organisation. Tools to provide better real-time threat reporting
and correlation from public threat monitors such as dark-nets, internet telescopes, honeypots and
vendor sensor networks are thus very important in gaining an accurate picture of current threats.
Extending these to include data from local sensors such as IDS and Firewall logs to provide an
organisation-scale view of threats would also help to get an accurate picture of attack activity.
For example, one current project is Symantec’s DeepSight analyser [192], which provides both
an internet-wide and organisation-wide view of threat activity.

6.4.2 Vulnerability Detail and Trend Tracking

Current vulnerability information is targeted at providing information on individual vulnerabil-
ities. Trend data can provide some valuable insight. For example, information on the dates on
which vulnerabilities were first reported to vendors could provide an understanding of how fast
vendors are at providing patches, and provide more empirical evidence for some of the claims in
chapter 4. It would also allow vendors to be compared, and possibly motivated to patch faster.
More advanced information - such as code-level granularity, allowing description of the vulner-
able function or the type of vulnerability, instead of just the vulnerable version of the software
product - can be used to look for consistent security errors, providing insight for developers
looking to secure their products.

6.4.3 Optimal Time to Patch for Large Vendors

Section 3.2.3.3 worked out the optimal time to patch for a group of vulnerabilities that involved
many vendors. Beattie et al. [2] called for further research into the optimal time to patch for
individual vendors. This would give organisations a better idea of how they could minimise risks
from patches. This would integrate well with the vulnerability detail research described above,
as calculating the optimal time to patch requires information on when and how often a patch
was recalled. This research could help in patch scheduling decisions, choosing between different
vendor’s products and motivating vendors to improve their patches.

CHAPTER 6. CONCLUSION 131

6.4.4 Patch Standards

Patches are currently implemented in several forms, usually specific to an operating system or
deployment platform. One of the problems highlighted throughout this work was the existence
of multiple patch deployment mechanisms. This is less of a problem on open source platforms,
as most package management tools were developed to include a wide range of software - how-
ever, it is problematic on Microsoft’s platforms. Currently, there exist XML schemas to describe
vulnerabilities, most notably VuXML [190] and OVAL [193]. Providing a similar CVE [54]
compatible standard description for patches would allow for standard patch deployment applica-
tions to be built and used. This would need to coupled with a standard patch packaging format.
Given that many of the tasks of a package manager (dependency tracking, reverse dependencies,
roll-back etc.) are well understood, a cross-platform deployment mechanism could be developed.
This could decouple patch deployment from specific patch deployment tools. This would ease
patch testing for multiple platforms and distributions, reducing the redundant testing performed
by many groups, particularly in the open-source world. A patch could be developed by Red-Hat
and rolled out on a Debian machine with minimal modification.

6.5 Final Word

Patching is a problem that will be with us for a while. However, the current discussions around
patching generally revolve around the simple tasks of patch management. It is hoped that this
thesis has managed to broaden this discussion, but not unnecessarily so. Some of the issues
raised are problems that run right through the information security field, such as threat reporting
and change management. The broadest conclusion which can be drawn from this research is
that there is no simple solution to the problems of patch management; to realistically implement
a comprehensive and effective patch management policy would take some larger organisations
several years. However, some dependencies of such an implementation have not been effec-
tively fulfilled either. For example, our knowledge of threats is still very poor. Additionally, the
profit motive of many security vendors still has them bowing to the wrong pressures, and it is
unlikely that they would change overnight, especially while some still call themselves ’Unbreak-
able’. Solutions to the problems of patch management will take time before they can be easily
implemented.

CHAPTER 6. CONCLUSION 132

However, this is the work of a small group, and much more discussion, argument and debate
is required to find workable solutions to the problems that face each unique instantiation of a
patch administrator. The bar of information security debate must be raised above the noise of
vendor marketing and threat hype, so that meaningful discussion can occur at every level of
security management. It is our hope that this thesis has nudged the bar a little higher, however
it is the continued efforts of the many dedicated security professionals tirelessly analysing and
responding to events that has been most notably impressive. The power of a community cannot be
denied, and there are many ways in which the community can contribute. Open-source security
projects and communities such as Snort [217]or ClamAV [221], open database projects such as
OVAL [193] or OSVDB [52] or volunteer organisations such as the ISC [58] all contribute to
improving the security response.

References

[1] Schneier, Bruce. Full Disclosure and the Window of Exposure. Crypto-Gram Newsletter
(September 15, 2000).
Available at: http://www.schneier.com/crypto-gram-0009.html\#1

[2] Beattie, Steve; Arnold, Seth; Cowan, Crispin; Wagle, Perry; Wright, Chris and Shostack,
Adam. Timing the Application of Security Patches for Optimal Uptime. In LISA ’02:

Proceedings of the 16th USENIX conference on System administration, pages 233–242.
USENIX Association, Berkeley, CA, USA (2002).
Available at: http://www.usenix.org/publications/library/proceedings/lisa02/tech/full_papers/

beattie/beattie_html/

[3] Whitaker, Steve; Fish, Barry and Sands, Carl. Solaris Patch Management: Recommended

Strategy. Technical report, Sun Microsystems (February 2005).
Available at: http://www.sun.com/blueprints/0205/819-1002.pdf

[4] Rescorla, Eric. Is Finding Security Holes a Good Idea? In IEEE Security and Privacy,
volume 3, no. 1: pages 14–19 (2005). ISSN 1540-7993. doi:http://dx.doi.org/10.1109/
MSP.2005.17.

[5] CERT/CC Common Vulnerabilities and Exposures. Website (jun 2005).
Available at: http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel

[6] Office of Information and Communications Technology. Information Security Guideline

for NSW Government Part 1 Information Security Risk Management. Technical report,
New South Wales Department of Commerce (June 2003).
Available at: http://www.oit.nsw.gov.au/pdf/4.4.16.IS1.pdf

[7] Eschelbeck, Gerhard. The Laws of Vulnerabilities. In Black Hat Briefings (edited by Jeff
Moss). Black Hat, Inc, 2606 Second Avenue, 406, Seattle, WA 98121 USA (July 2003).

133

REFERENCES 134

[8] Eschelbeck, Gerhard. The Laws of Vulnerabilities 2005. Qualys Research & Development
(2005).
Available at: http://www.qualys.com/research/rnd/vulnlaws/

[9] Eschelbeck, Gerhard. The Laws of Vulnerabilities. In Black Hat Briefings (edited by
Jeff Moss). Black Hat, Inc, 2606 Second Avenue, 406, Seattle, WA 98121 USA (March
2004).
Available at: http://www.blackhat.com/presentations/bh-asia-04/bh-jp-04-pdfs/

bh-jp-04-eschelbeck.pdf

[10] Dumbill, Edd. The Next 50 Years of Computer Security: An Interview with Alan Cox.
O’Reilly Network, Interview (September 12, 2005).
Available at: http://www.oreillynet.com/pub/a/network/2005/09/12/alan-cox.html

[11] Weaver, Nicholas C. Warhol Worms: The Potential for Very Fast Internet Plagues. In
(2001).
Available at: http://www.iwar.org.uk/comsec/resources/worms/warhol-worm.html

[12] Poulsen, Kevin. Nachi worm infected Diebold ATMs. Security Focus - Columnist (Novem-
ber 24, 2003).
Available at: http://www.securityfocus.com/news/7517

[13] Harding, Luke. Court hears how teenage introvert created devastating computer virus in

his bedroom. The Guardian Newspaper (July 6, 2005).
Available at: http://www.guardian.co.uk/germany/article/0,2763,1522192,00.html

[14] Thomas, Daniel. Are our critical systems safe from cyber attack? vunet.com News (April
21, 2005).
Available at: http://www.vnunet.com/computing/analysis/2142496/critical-systems-safe-cyber

[15] Glave, James. Crackers: We Stole Nuke Data. Wired News (June 6, 1998).
Available at: http://www.wired.com/news/technology/0,1282,12717,00.html

[16] Sophos Security Threat Management Report 2005. Technical report, SOPHOS Inc. (De-
cember 6, 2005).
Available at: http://www.sophos.com/virusinfo/whitepapers/SophosSecurity2005-mmuk.pdf

[17] Danchev, Dancho. Malware - future trends. In (January 9, 2006).
Available at: http://www.packetstormsecurity.org/papers/general/malware-trends.pdf

REFERENCES 135

[18] holy_father@phreaker.net. Hacker Defender Antidetection Service. Product Description
(December 2005).
Available at: http://hxdef.czweb.org/about.php

[19] Eckelberry, Alex. Massive identity theft ring. Sunbelt Software Blog (August 4, 2005).
Available at: http://sunbeltblog.blogspot.com/2005/08/massive-identity-theft-ring.html

[20] Salusky, William. Mitgleider Hell. SANS Internet Storm Center Handler’s Diary (October
3, 2005).
Available at: http://isc.sans.org/diary.php?storyid=722

[21] ’Mafiaboy’ hacker jailed. BBC News (September 13, 2001).
Available at: http://news.bbc.co.uk/1/hi/sci/tech/1541252.stm

[22] Current Malware Threats and Mitigation Strategies. Technical report, US-CERT (May
16, 2005).
Available at: http://www.cscic.state.ny.us/msisac/webcasts/05_05/info/mal_%20thrt_mit\

_strat.pdf

[23] 386BSD + LINIX + GNU + X11R5 on CDROM - let us know what you want! USENET
(December 1, 1992).
Available at: http://groups.google.com/group/comp.unix.bsd/browse_thread/thread/

134942a64ef36f5e/8d03067120d4f2bf

[24] When will HP supply PATCHES before they are Required? USENET (November 17,
1992).
Available at: http://groups.google.com/group/comp.sys.hp/browse_thread/thread/

e065debcf70b5ec0/5cd814ab642863ce

[25] Top 10 Admin problems on Suns? USENET (February 27, 1992).
Available at: http://groups.google.com/group/comp.sys.sun.admin/browse_thread/thread/

921af6e2129df23c/5f95293a20a34f19

[26] Wall, Larry. Patch version 1.3. USENET (May 24, 1985).
Available at: http://groups.google.com/group/mod.sources/browse_thread/thread/

c5240ceb77b7f586/488b0929254d936a

REFERENCES 136

[27] Mohd A. Bashar, Markus G. Kuhn E. H. Spafford S. S. Wagstaff Jr, Ganesh Krishnan.
Low Threat Security Patches and Tools. In IEEE Computer Society (1997). CSD-TR-96-
075; COAST TR 97-10.
Available at: https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/97-10.

pdf

[28] Eichin, Marchk W. and Rochlis, Jon A. An Analysis of the Internet Virus of Novemberem-

ber 1988. In IEEE Symposium on Research in Security and Privacy (1989).
Available at: http://web.mit.edu/eichin/www/virus/main.html

[29] Bejtlich, Richard. Miscategorizes Threats. Blog Entry (July 8, 2005).
Available at: http://taosecurity.blogspot.com/2005/07/cool-site-unfortunately-miscategorizes.

html

[30] US Army Information Assurance Division. Army Regulation 25-2. Glossary (November
14, 2003).
Available at: http://ia.gordon.army.mil/iaso/Army/AR25-2/main.htm\#term

[31] Office of Cyber Security & Critical Infrastructure Coordination. National Webcast Initia-

tive, Cyber Security Risk Assessment Webcast, Glossary of Terms. Glossary (August 26,
2004).
Available at: http://www.cscic.state.ny.us/msisac/webcasts/8_04/info/804_webcast_glossary.

htm

[32] Stoneburner, Gary; Goguen, Alice and Feringa, Alexis. Risk Management Guide for In-

formation Technology Systems. Technical report, National Institute of Standards (NIST),
Computer Security Division, Information Technology Laboratory, National Institute of
Standards and Technology, Gaithersburg, MD 20899-8930 (July 2002). Special Publica-
tion 800-30.
Available at: http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

[33] The Security Risk Management Guide. Technical report, Microsoft (October 15, 2004).
Available at: http://www.microsoft.com/technet/security/topics/policiesandprocedures/secrisk/

default.mspx

[34] Bejtlich, Richard. Personal Communication (December 11, 2005).

[35] Guideline for Management of IT Security-Part 1: Concepts and Models for IT security.
Technical report, ISO/IEC (1996).

REFERENCES 137

[36] Definition: Patch. The Jargon File.
Available at: http://www.catb.org/~esr/jargon/html/P/patch.html

[37] KB 824684. Microsoft Knowledge Base (September 15, 2005).
Available at: http://support.microsoft.com/kb/824684

[38] Oracle9i Database Administrator’s Guide. Product Guide (April 23, 2002).
Available at: http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96521/dba.htm\#13284

[39] Analysis of the Witty Worm. Technical report, LURHQ (March 20, 2004).
Available at: http://www.lurhq.com/witty.html

[40] Berinato, Scott. Patch and Pray. In CSO Online (August 2003).
Available at: http://www.csoonline.com/read/080103/patch.html

[41] Cheswick, Bill. The Design of a Secure Internet Gateway. In Proceedings of the USENIX

Summer 1990 Conference, pages 233–237. Anaheim, CA (June 11-15, 1990).
Available at: http://research.lumeta.com/ches/papers/gateway.ps

[42] Mann, Charles. Interview with Bruce Schneier. The Atlantic News, Interview (September
2002).
Available at: http://www.theatlantic.com/doc/prem/200209/mann

[43] Dekker, Marcel. The Froehlich/Kent Encyclopedia of Telecommunications, volume 15.
New York (1997).
Available at: http://www.cert.org/encyc_article/tocencyc.html\#History

[44] Arbaugh, William A.; Fithen, William L. and McHugh, John. Windows of Vulnerability:

A Case Study Analysis. In Computer, volume 33, no. 12: pages 52–59 (2000). ISSN
0018-9162. doi:http://dx.doi.org/10.1109/2.889093.

[45] Browne, Hilary K.; Arbaugh, William A.; McHugh, John and Fithen, William L. A Trend

Analysis of Exploitations. In SP ’01: Proceedings of the 2001 IEEE Symposium on Secu-

rity and Privacy, page 214. IEEE Computer Society, Washington, DC, USA (2001).
Available at: http://www.securityfocus.com/data/library/CS-TR-4200.pdf

[46] Dacey, Robert F. GAO-03-1138T: Effective Patch Management is Critical to Mitigat-

ing Software Vulnerabilities. Technical report, United States General Accounting Office
(Septmember 10, 2003). Testimony Before the Subcommittee on Technology Information

REFERENCES 138

Policy, Intergovernmental Relations, and the Census, House Committee on Government
Reform.
Available at: http://www.gao.gov/cgi-bin/getrpt?GAO-03-1138T

[47] Mell, Peter; Bergeron, Tiffany and Henning, David. Creating a Patch and Vulnerability

Management Program. Technical report, National Institute of Standards (NIST), Com-
puter Security Division, Information Technology Laboratory, National Institute of Stan-
dards and Technology, Gaithersburg, MD 20899-8930 (November 2005). Special Publi-
cation 800-40 ver. 2.
Available at: http://csrc.nist.gov/publications/nistpubs/800-40/sp800-40.pdf

[48] Panko, Ray. Human Error Website. Research Website (April 1, 2005).
Available at: http://panko.cba.hawaii.edu/HumanErr/

[49] Bernstein, D. J. The qmail security guarantee. Website (May 29, 2005).
Available at: http://cr.yp.to/qmail/guarantee.html

[50] Ellis, James; Fisher, David; Longstaff, Thomas; Pesante, Linda and Pethia, Richard. Re-

port to the President’s Commission on Critical Infrastructure Protection. Technical report,
CERT R© Coordination Center, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania (January 1997).
Available at: http://www.cert.org/pres_comm/cert.rpcci.body.html

[51] CERT/CC Statistics 1988-2005. CERT/CC Website (January 2005).
Available at: http://www.cert.org/stats/cert_stats.html

[52] Open Source Vulnerability Database Search. OSVDB Website (December 2005).
Available at: http://osvdb.org/search.php

[53] Martin, Brian; Christey, Steve and White, Dominic. SANS Top 20 Report Value. Online
Discussion (November 2005).
Available at: http://www.osvdb.org/blog/?p=67\#comments

[54] Statistics Query Page. National Vulnerability Database Website (December 2005).
Available at: http://nvd.nist.gov/statistics.cfm

[55] All Secunia Security Advisories 2003-2005. Secunia Website (December 2005).
Available at: http://secunia.com/graph/?type=all\&graph=adv

REFERENCES 139

[56] Houle, Kevin and Weaver, George. Trends in Denial of Service Attack Technology. In
(October 2001).
Available at: http://www.cert.org/archive/pdf/DoS_trends.pdf

[57] Howard, John D. An Analysis Of Security Incidents On The Internet, 1989 - 1995. Ph.D.
thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 USA (April 7, 1997).
Available at: http://www.cert.org/research/JHThesis/Chapter12.html

[58] DShield - Distributed Intrusion Detection System, The Internet’s Early Warning System

and Internet Security community site. Product Website.
Available at: http://www.dshield.org/

[59] Moore, David; Voelker, Geoffrey M. and Savage, Stefan. Inferring Internet Denial-of-

Service Activity. In Proceedings of the 10th USENIX Security Symposium. Washington,
D.C., USA (August 2001).
Available at: http://www.usenix.org/publications/library/proceedings/sec01/moore.html

[60] Yegneswaran, Vinod; Barford, Paul and Ullrich, Johannes. Internet intrusions: global

characteristics and prevalence. In SIGMETRICS ’03: Proceedings of the 2003 ACM SIG-

METRICS international conference on Measurement and modeling of computer systems,
pages 138–147. ACM Press, New York, NY, USA (2003). ISBN 1-58113-664-1. doi:
http://doi.acm.org/10.1145/781027.781045.

[61] Survival Time History. SANS Website (December 2005).
Available at: http://isc.sans.org/survivalhistory.php

[62] Overview of Attack Trends. Technical report, CERT/CC (October, 11 2005).
Available at: http://www.cert.org/archive/pdf/attack_trends.pdf

[63] Kaminsky, Dan. Scanrand Dissected: A New Breed of Network Scanner. Technical report,
LURHQ Threat Intelligence Group.
Available at: http://www.lurhq.com/scanrand.html

[64] Jontz, Sandra. Navy, Marines Block Commercial Email Sites. Military.com News (October
19, 2005).
Available at: http://www.military.com/NewsContent/0,13319,78905,00.html

[65] Turner, Dean; Entwisle, Stephen; Friedrichs, Oliver; Ahmad, David; Hanson, Daniel;
Fossi, Marc; Gordon, Sarah; Szor, Peter; Chien, Eric; Cowings, David; Morss, Dylan and

REFERENCES 140

Bradley, Brad. Symantec Internet Security Threat Report: Trends for July 04-December

04. Technical report, Symantec (March 2005). Volume VII.
Available at: http://ses.symantec.com/pdf/ThreatReportVII.pdf

[66] Eschelbeck, Gerhard. Security Vulnerabilities, Exploits and Patches. Creativematch On-
line Magazine (May 3, 2005).
Available at: http://www.creativematch.co.uk/viewnews/?90970

[67] Sancho, David. The Future of Bot Worms: What we can expect from worm authors in the

coming months. Technical report, Trend Micro (2005).
Available at: http://www.trendmicro.com/NR/rdonlyres/B612D246-283C-444C-8A92-B0AC6782A2D1/

17115/Future_of_Bots_FINAL.pdf

[68] Miller, Charles. Expanding Exposure: The Decreasing Time Between Web Application

Vulnerability and Exploitation. OWASP Papers Program (November 11, 2005).
Available at: http://www.owasp.org/docroot/owasp/misc/webapp-oswap.doc

[69] Long, Johnny. Goggledork Database.
Available at: http://johnny.ihackstuff.com/

[70] Flake, Halvar. SABRE BinDiff. Product Website (June 26, 2005).
Available at: http://www.sabre-security.com/products/bindiff.html

[71] Rescorla, Eric. Security holes... Who cares? In Proceedings of the 12th USENIX Security

Symposium, pages 75–90 (August 2003).
Available at: http://www.rtfm.com/upgrade.pdf

[72] Software Installation and Maintenance. Microsoft TechNet.
Available at: http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/

featusability/inmnwp.mspx

[73] Basics of the Debian package management system. The Debian GNU/Linux FAQ
(September 14, 2005). Maintained by Javier Fernandez-Sanguino.
Available at: http://www.debian.org/doc/FAQ/ch-pkg_basics

[74] Vulnerability in Graphics Rendering Engine Could Allow Remote Code Execution

(912919). Microsoft Security Bulletin (January 5, 2006).
Available at: http://www.microsoft.com/technet/security/bulletin/ms06-001.mspx

REFERENCES 141

[75] ANELKAOS. Gmail Bug. Vulnerability Advisory (October 2005).
Available at: http://www.elhacker.net/gmailbug/english_version.htm

[76] All Vulnerabilities discovered through ChangeLog entries. Open Source Vulnerability
Database.
Available at: http://www.osvdb.org/searchdb.php?text=ChangeLog

[77] Genuine Microsoft Software. Vendor Website.
Available at: http://www.microsoft.com/genuine/default.mspx?displaylang=en

[78] OracleMetaLink. Vendor Website.
Available at: https://metalink.oracle.com/

[79] SunSolve Online. Vendor Website.
Available at: http://sunsolve.sun.com/

[80] Buffer Overruns in SQL Server 2000 Resolution Service Could Enable Code Execution

(Q323875). Microsoft Security Bulletin (July 24, 2002).
Available at: http://www.microsoft.com/technet/security/bulletin/ms02-039.mspx

[81] Moore, David; Paxson, Vern; Savage, Stefan; Shannon, Colleen; Staniford, Stuart and
Weaver, Nicholas. The spread of the Sapphire/Slammer worm. Technical report, The
Cooperative Association for Internet Data Analysis (CAIDA) (February 2003).
Available at: http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html

[82] Cumulative Patch for SQL Server (Q316333). Microsoft Security Bulletin (August 14,
2002).
Available at: http://www.microsoft.com/technet/security/bulletin/ms02-043.mspx

[83] Cumulative Patch for SQL Server (Q316333). Microsoft Security Bulletin (October 2,
2002).
Available at: http://www.microsoft.com/technet/security/bulletin/ms02-056.mspx

[84] Elevation of Privilege in SQL Server Web Tasks (Q316333). Microsoft Security Bulletin
(October 16, 2002).
Available at: http://www.microsoft.com/technet/security/bulletin/ms02-061.mspx

[85] FIX: Handle Leak Occurs in SQL Server When Service or Application Repeatedly Con-

nects and Disconnects with Shared Memory Network Library. Microsoft Security Bulletin

REFERENCES 142

(October 30, 2005).
Available at: http://support.microsoft.com/default.aspx?scid=kb;en-us;317748

[86] Cooper, Russ. Confusion about versions. NTBugTraq Mailinglist (January 28, 2003).
Available at: http://archives.neohapsis.com/archives/ntbugtraq/2003-q1/0045.html

[87] Thurrott, Paul. Microsoft Releases SQL Server 2000 SP3. WindowsITPro News (January
23, 2003).
Available at: http://www.windowsitpro.com/Article/ArticleID/37800/37800.html

[88] Compatibility and Resource Guide. Technical report, Best Software (July 7, 2004).
Available at: http://www.blytheco.com/pdf/bes/misc/MAS500CompatibilityGuide63.doc

[89] Roberts, Paul. Microsoft Slammed by Its Own Vulnerability. IDG News Service (January
28, 2003).
Available at: http://www.pcworld.com/news/article/0,aid,109043,00.asp

[90] Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution (833987). Mi-
crosoft Security Bulletin (September 14, 2004).
Available at: http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx

[91] Hyppönen, Mikko. Be careful with WMF files. F-Secure Anti-Virus Weblog (December
28, 2005).
Available at: http://www.f-secure.com/weblog/archives/archive-122005.html\#00000753

[92] All About GDI+. Technical report, Microsoft.
Available at: http://msdn.microsoft.com/security/gdiplus/default.aspx

[93] Liston, Tom. GDI Scan. Internet Storm Centre (October 2, 2004).
Available at: http://isc.sans.org/gdiscan.php

[94] Chan, Jason. Essentials of Patch Management Policy and Practice. @stake (January
2004).
Available at: http://www.patchmanagement.org/pmessentials.asp

[95] British Standard/International Standard Organization. BS/ISO 17799 Information technol-

ogy – Code of practice for information security management (2000).

REFERENCES 143

[96] MacLeod, Kenneth J. Patch Management and the Need for Metrics. In (July 14, 2004).
SANS Security Essentials GSEC Practical Assignment.
Available at: http://www.sans.org/rr/whitepapers/bestprac/1461.php

[97] Voldal, Daniel. A Practical Methodology for Implementing a Patch management Process.
In (September 26, 2003).
Available at: http://www.sans.org/rr/whitepapers/bestprac/1206.php

[98] White, Dominic and Irwin, Barry. A Unified Architecture for Automatic Software Updates.
In Proceedings of Information Security South Africa 2004 (June 2004).
Available at: http://www.cs.ru.ac.za/research/students/g00w1690/files/issa2004.pdf

[99] Swanson, Marianne. Guide for Developing Security Plans for Information Technology

Systems. Technical report, National Institute of Standards (NIST), Computer Security
Division, Information Technology Laboratory, National Institute of Standards and Tech-
nology, Gaithersburg, MD 20899-8930 (December 1998). Special Publication 800-18,
Federal Computer Security Program Managers’ Forum Working Group.
Available at: http://csrc.nist.gov/publications/nistpubs/800-18/Planguide.PDF

[100] Carothers, Tony. Port 1025/6000 Action (Part III). Internet Storm Centre Handler’s Diary
(December 11, 2005).
Available at: http://isc.sans.org/diary.php?storyid=926

[101] Kohen, Javier and Rizzo, Juliano. DCE RPC Vulnerabilities New Attack Vectors Analysis.
Technical report, Core Security Technologies (December 9, 2003).
Available at: http://www.coresecurity.com/common/showdoc.php?idx=393\&idxseccion=10

[102] Vulnerabilities in MSDTC and COM+ Could Allow Remote Code Execution (902400).
Microsoft Security Bulletin (October 11, 2005).
Available at: http://www.microsoft.com/technet/security/Bulletin/MS05-051.mspx

[103] Gregg, Michael. CISSP Exam Cram 2. Que (September 22, 2005). ISBN 078973446X.

[104] Bradley, Tony. Critical Elements For Patch Testing Policies. In (June 17, 2005). Vol. 27,
Issue 24.
Available at: http://www.processor.com/editorial/article.asp?article=articles%2Fp2724%2F22p24%

2F22p24%2Easp\&guid=8BF8F1B9C3044EDDB8172AF340C1667C\&searchtype=0\&WordList=

REFERENCES 144

[105] VMWare. VMWare Virtualisation Software. Vendor Website (June 26, 2006).
Available at: http://www.vmware.com/

[106] Pratt, Ian. The Xen virtual machine monitor. Project Website (April 13, 2006).
Available at: http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

[107] Microsoft. Microsoft Virtual PC 2004. Vendor Website (June 26, 2006).
Available at: http://www.microsoft.com/windows/virtualpc/default.mspx

[108] Microsoft. Microsoft Virtual Server 2005 R2. Vendor Website (June 26, 2006).
Available at: http://www.microsoft.com/windowsserversystem/virtualserver/default.mspx

[109] Shaw, Yun. Patch Management in Oracle Applications Release 11i. Technical report,
Oracle Corporation (May 2005).
Available at: http://whitepapers.zdnet.co.uk/0,39025945,60143559p-39000388q,00.htm

[110] Windows Update Services Deployment White Paper. Technical report, Microsoft (Novem-
berember 2004).
Available at: http://www.microsoft.com/windowsserversystem/wus/deployment.mspx

[111] Thompson, Ken. Reflections on trusting trust. In Communications of the ACM, volume 27,
no. 8 (August 1984).

[112] Dunagan, John; Roussev, Roussi; Daniels, Brad; Johson, Aaron; Verbowski, Chad and
Wang, Yi-Min. Towards a Self-Managing Software Patching Process Using Black-Box

Persistent-State Manifests. In Proceedings of IEEE International Conference on Auto-

nomic Computing (ICAC). Institute of Electrical and Electronics Engineers, Inc. (March
2004).
Available at: http://research.microsoft.com/research/pubs/view.aspx?tr_id=726

[113] Sun, Yizhan and Couch, Alva. Global Impact Analysis of Dynamic Library Dependencies.
In Proceedings of the 2001 Large Installation System Administration Conference(LISA01)

(USENIX Association: Berkeley, CA), page 145 (December 3, 2001).
Available at: http://www.usenix.org/publications/library/proceedings/lisa2001/tech/sun.html

[114] White, Dominic and Irwin, Barry. Patching for Low Bandwidth Communities. In Pro-

ceedings of Southern African Telecommunication Networks & Applications Conference

(September 11, 2005).

REFERENCES 145

Available at: http://www.cs.ru.ac.za/research/students/g00w1690/files/satnac2005/

patchingbandwidth.pdf

[115] Cumulative Security Update for Internet Explorer (896727). Microsoft Security Bulletin
(August 9, 2005).
Available at: http://www.microsoft.com/technet/security/Bulletin/MS05-038.mspx

[116] Keizer, Gregg. Microsoft Initially Released Corrupted IE Patch. TechWeb News (August
10, 2005).
Available at: http://techweb.com/wire/security/168600527

[117] Vulnerability disclosure publications and discussion tracking. University of Oulu, Elec-
trical and Information Engineering Department (May 10, 2005).
Available at: http://www.ee.oulu.fi/research/ouspg/sage/disclosure-tracking/

[118] McMillan, Robert. Adobe Adopts Monthly Patch Cycle. IDG News Service (December
15, 2005).
Available at: http://www.theregister.co.uk/2005/12/15/adobe_monthly_patch_plan/

[119] Emigh, Jacqueline. Users Weigh In on Oracle’s Patch Plan. eWeek.com News (August
23, 2004).
Available at: http://www.eweek.com/article2/0,1895,1638797,00.asp

[120] Livingston, Brian. Microsoft’s Patch-A-Month Club. eWeek.com News (November 3,
2003).
Available at: http://www.eweek.com/article2/0,1895,1490665,00.asp

[121] Bott, Ed. Patches: Once a month is not enough. Ed Bott’s Microsoft Report Blog (March
24, 2006).
Available at: http://blogs.zdnet.com/Bott/?p=23

[122] Lemos, Robert. Microsoft releases monthly security fixes. CNET News.com (October 15,
2003).
Available at: http://news.com.com/Microsoft+releases+monthly+security+fixes/2100-7355\

_3-5091835.html

[123] Pruitt, Scarlet. Oracle moves to monthly patching schedule. IDG News Service (August
20, 2004).
Available at: http://www.computerworld.com/securitytopics/security/story/0,10801,95388,00.html

REFERENCES 146

[124] Evers, Joris. Oracle to deliver security patches on quarterly basis. IDG News Service
(November 18, 2004).
Available at: http://www.infoworld.com/article/04/11/18/HNoraclepatchquarterly_1.html

[125] Litchfield, David. Opinion: Complete failure of Oracle security response and utter neglect

of their responsibility to their customers. BugTraq Mailing list (January 6, 2005).
Available at: http://seclists.org/lists/bugtraq/2005/Oct/0056.html

[126] Mogull, Rich. Flaws Show Need to Update Oracle Product Management Practices. Tech-

nical report, Gartner (January 23, 2006).
Available at: http://www.gartner.com/DisplayDocument?ref=g_search\&id=488567

[127] Fisher, Dennis. Changing Patch Habits With Microsoft. eWeek.com News (December 6,
2004).
Available at: http://www.eweek.com/article2/0,1895,1735542,00.asp

[128] Farrow, Rik. The Pros and Cons of Posting Vulnerabilities. IT Architect (May 10, 2005).
Available at: http://www.itarchitect.com/shared/article/showArticle.jhtml?articleId=8702916

[129] Arora, Ashish; Telang, Rahul and Xu, Hao. Optimal Policy for Software Vulnerability

Disclosure. In Workshop on Economics and Information Security (May 2004).
Available at: http://www.heinz.cmu.edu/~rtelang/disclosure_finalMS_IS.pdf

[130] Arora, Ashish; Krishnan, Ramayya; Nandkumar, Anand; Telang, Rahul and Yang, Yubao.
Impact of Vulnerability Disclosure and Patch Availability - An Empirical Analysis. In
Third Annual Workshop on Economics and Information Security WEIS04 (April 2004).
Available at: http://www.heinz.cmu.edu/~rtelang/disclosure_finalMS_IS.pdf

[131] Rauch, Jeremy. The Future of Vulnerability Disclosure? In ;login: the USENIX Associa-

tion Newsletter, volume 11 (December 8, 1999).
Available at: http://www.usenix.org/publications/login/1999-11/features/disclosure.html

[132] Schneier, Bruce. Cisco Harasses Security Researcher. CryptoGram Newsletter (July 29,
2005).
Available at: http://www.schneier.com/blog/archives/2005/07/cisco_harasses.html

[133] Rain Forest Puppy. Full Disclosure Policy (RFPolicy) v2.0. Unofficial Policy (September
8, 2004).
Available at: http://www.wiretrip.net/rfp/policy.html

REFERENCES 147

[134] OIS Guidelines for Security Vulnerability Reporting and Response, V2.0. Technical report,
Organisation for Internet Safety (September 17, 2004).
Available at: http://www.oisafety.org/guidelines/secresp.html

[135] Cooper, Russ. NTBugtraq Disclosure Policy. Technical report, NTBugTraq (July 26,
1999).
Available at: http://www.ntbugtraq.com/default.aspx?sid=1\&pid=47\&aid=48

[136] CERT/CC Vulnerability Disclosure Policy. Technical report, CERT/CC (October 9,
2000).
Available at: http://www.cert.org/kb/vul_disclosure.html

[137] Laakso, Marko; Takanen, Ari and Roning, Juha. Introducing constructive vulnerability

disclosures. In (2001).
Available at: http://www.ee.oulu.fi/research/ouspg/protos/sota/FIRST2001-disclosures/paper.pdf

[138] Arora, Ashish; Krishnan, Ramayya; Telang, Rahul and Yang, Yubao. An Empirical Anal-

ysis of Vendor Response to Disclosure Policy. In The Fourth Annual Workshop on Eco-

nomics and Information Security WEIS05 (March 2004).
Available at: http://infosecon.net/workshop/pdf/41.pdf

[139] Handling Mozilla Security Bugs. Technical report, Mozilla Foundation (February 11,
2003).
Available at: http://www.mozilla.org/projects/security/security-bugs-policy.html

[140] Kean, Kevin. Updated Advisory: WMF Vulnerability. Microsoft Security Response Centre
(January 2006).
Available at: http://blogs.technet.com/msrc/archive/2006/01/03/416809.aspx

[141] Ford, Heather. An open invitation to culture-jamming with Laugh It Off. Creative
Commons South Africa News (March 2005).
Available at: http://za.creativecommons.org/blog/archives/2005/03/18/

an-open-invitation-to-culture-jamming-with-laugh-it-off/

[142] Havrilla, Jeffrey S. and Dormann, Will. Vulnerability Note VU#181038 Microsoft Win-

dows Metafile handler SETABORTPROC GDI Escape vulnerability. Technical report,
US-CERT (January 20, 2006).
Available at: http://www.kb.cert.org/vuls/id/181038

REFERENCES 148

[143] Anonymous. Is this a new exploit? BugTraq Mailinglist (December 27, 2005).
Available at: http://archives.neohapsis.com/archives/bugtraq/2005-12/0305.html

[144] Exploit-WMF. McAfee Virus Information Library (January 5, 2006).
Available at: http://vil.mcafeesecurity.com/vil/content/vi_137760.htm

[145] Bleeding Snort Current Events WMF Exploit Signature. Bleeding Snort Current Events
CVS Signature Repository (February 7, 2006).
Available at: http://www.bleedingsnort.com/cgi-bin/viewcvs.cgi/sigs/CURRENT_EVENTS/CURRENT\

_WMF_Exploit

[146] Carboni, Chris. Update on Windows WMF 0-day. SANS Internet Storm Centre Handler’s
Diary (December 29, 2005).
Available at: http://isc.sans.org/diary.php?storyid=975

[147] Wesemann, Daniel. The most hated IP address of 2005 ? SANS Internet Storm Centre
Handler’s Diary (December 28, 2005).
Available at: http://isc.sans.org/diary.php?storyid=974

[148] Serino, Jim. RE: [Full-disclosure] Someone wasted a nice bug on spyware... BugTraq
Mailinglist (December 28, 2005).
Available at: http://archives.neohapsis.com/archives/bugtraq/2005-12/0320.html

[149] Guilfanov, Ilfak. Windows WMF Metafile Vulnerability HotFix. Hex Blog (December 31,
2005).
Available at: http://www.hexblog.com/2005/12/wmf_vuln.html

[150] Frantzen, Swa. New exploit released for the WMF vulnerability. SANS Internet Storm
Centre Handler’s Diary (January 1, 2006).
Available at: http://isc.sans.org/diary.php?storyid=992

[151] Ullrich, Johannes. Recommended Block List. SANS Internet Storm Centre Handler’s
Diary (January 2, 2006).
Available at: http://isc.sans.org/diary.php?storyid=997

[152] Sachs, Marcus. Installing a Patch Silently. SANS Internet Storm Centre Handler’s Diary
(January 2, 2006).
Available at: http://isc.sans.org/diary.php?storyid=1004

REFERENCES 149

[153] Sachs, Marcus. Scripting the Unofficial .wmf Patch. SANS Internet Storm Centre Han-
dler’s Diary (January 2, 2006).
Available at: http://isc.sans.org/diary.php?storyid=1008

[154] Sachs, Marcus. Checking for .wmf vulnerabilities. SANS Internet Storm Centre Handler’s
Diary (January 2, 2006).
Available at: http://isc.sans.org/diary.php?storyid=1006

[155] Guilfanov, Ilfak. WMF Vulnerability Checker. Hex Blog (January 1, 2006).
Available at: http://www.hexblog.com/2006/01/wmf_vulnerability_checker.html

[156] Frantzen, Swa. WMF FAQ. SANS Internet Storm Centre Handler’s Diary (January 7,
2006).
Available at: http://isc.sans.org/diary.php?storyid=994

[157] Sachs, Marcus. .wmf FAQ Translations. SANS Internet Storm Centre Handler’s Diary
(January 3, 2006).
Available at: http://isc.sans.org/diary.php?storyid=1005

[158] Liston, Tom. Updated version of Ilfak Guilfanov’s patch / ,msi file. SANS Internet Storm
Centre Handler’s Diary (January 1, 2006).
Available at: http://isc.sans.org/diary.php?storyid=999

[159] Hyppönen, Mikko. Hexblog.com overloaded. F-Secure Anti-Virus Weblog (January 4,
2006).
Available at: http://www.f-secure.com/weblog/archives/archive-012006.html\#00000767

[160] Reavey, Mike. WMF Vulnerability Security Update. Microsoft Security Response Centre
Blog (January 4, 2006).
Available at: http://blogs.technet.com/msrc/archive/2006/01/04/416847.aspx

[161] Nash, Mike. Mike Nash on the Security Update for the WMF Vulnerability. Microsoft
Security Response Centre Blog (January 5, 2006).
Available at: http://blogs.technet.com/msrc/archive/2006/01/05/416980.aspx

[162] Mook, Nate. US Govt. to Test Windows Patches Early. BetaNews (March 11, 2005).
Available at: http://www.betanews.com/article/US_Govt_to_Test_Windows_Patches_Early/

1110560071

REFERENCES 150

[163] Nash, Mike. Mike Nash on the Security Update for the WMF Vulnerability. Microsoft
Security Response Centre (January 2006).
Available at: http://blogs.technet.com/msrc/archive/2006/01/05/416980.aspx

[164] Krebs, Brian. A Time to Patch. Washington Post’s Security Fix (January 11, 2006).
Available at: http://blogs.washingtonpost.com/securityfix/2006/01/a_timeline_of_m.html

[165] White, Dominic. Microsoft Patch Speed Inconsistencies. .tHE pRODUCT Weblog (Jan-
uary 13, 2006).
Available at: http://singe.rucus.net/blog/archives/687-Microsoft-Patch-Speed-Inconsistencies.

html

[166] Haugsness, Kyle. Bofra/IFrame Exploits on More Web Sites (updated); IFRAME vulner-

ability summary; Two more IE Exploits. SANS Internet Storm Center Handler’s Diary
(November 20, 2004).
Available at: http://isc.sans.org/diary.php?date=2004-11-20

[167] Update for Microsoft Internet Explorer HTML Elements Vulnerability. Technical report,
US-CERT (December 3, 2004).
Available at: http://www.us-cert.gov/cas/techalerts/TA04-336A.html

[168] Frantzen, Swa. Black tuesday - the day after. SANS Internet Storm Center Handler’s
Diary (December 14, 2005).
Available at: http://isc.sans.org/diary.php?storyid=932

[169] Upcoming Advisories. eEye Digital Security (January 2006).
Available at: http://www.eeye.com/html/research/upcoming/

[170] de Beaupre, Adrien. Handler’s Diary. SANS Internet Storm Centre Handler’s Diary (July
12, 2005).
Available at: http://isc.sans.org/diary.php?date=2005-07-12

[171] Toulouse, Stephen. Microsoft presenting at the Black Hat security conference in Las

Vegas. Microsoft Security Response Centre Blog (June 9, 2006).
Available at: http://blogs.technet.com/msrc/archive/2006/06/09/434600.aspx

[172] Microsoft. Microsoft BlueHat Security Briefings. TechNet Security (March 8, 2006).
Available at: http://www.microsoft.com/technet/security/bluehat/sessions/default.mspx

REFERENCES 151

[173] Vaas, Lisa. Oracle’s Silence on Database Security Wearing Thin. eWeek.com News
(August 17, 2004).
Available at: http://www.eweek.com/article2/0,1895,1637079,00.asp

[174] Vaas, Lisa. Security Firm: Oracle Opatch Leaves Firms Uncovered. eWeek.com News
(August 22, 2005).
Available at: http://www.eweek.com/article2/0,1895,1850287,00.asp

[175] Mozilla Foundation Awards Bug Bounties. Mozilla Foundation News (March 28, 2005).
Available at: http://www.mozilla.org/press/mozilla-2005-03-28.html

[176] RPM Guide. The Fedora Project (November 11, 2005).
Available at: http://fedora.redhat.com/docs/drafts/rpm-guide-en/ch-intro-rpm.html

[177] Debian Documentation Team. A Brief History of Debian. Debian Foundation (August 10,
2005).
Available at: http://www.debian.org/doc/manuals/project-history/ch-releases.en.html

[178] Bartoletti, Tony; Dobbs, Lauri A. and Kelley, Marcey. Secure Software Distribution Sys-

tem. Technical report, Computer Security Technology Center, Lawrence Livermore Na-
tional Laboratory, PO Box 808 L-303 Livermore, CA 94551 (June 30, 1997).
Available at: http://ciac.llnl.gov/cstc/ssds/ssdswp.pdf

[179] Trusted Strategies. Patch Management Sector Report. Technical report, Trusted Strategies
(May 2004).
Available at: http://www.trustedstrategies.com/nl1/rnr.php

[180] Brynjolfsson, Erik and Hitt, Lorin. Computing Productivity: Firm-Level Evidence. In
MIT Sloan Working Paper No 4210-01 (June 2003). doi:http://dx.doi.org/10.2139/ssrn.
290325.
Available at: http://ssrn.com/abstract=290325

[181] Patch Management Product Comparisons. PatchManagement.org (November 1, 2004).
Available at: http://www.patchmanagement.org/comparisons.asp

[182] Landesman, Mary. Security Patch Management: Breaking New Ground. Technical report,
Shavlik (2004).
Available at: http://www.shavlik.com/whitepapers/security_patch_management.pdf

REFERENCES 152

[183] Nicolett, Mark and Colville, Ronni. Robust Patch Management Requires Specific Capa-

bilities. Research Note T-19-4570 (March, 2003).

[184] Furrow, Chris and Manzuik, Steve. Injecting Trojans via Patch Management Software

and Other Evil Deeds. In Black Hat Europe. Black Hat, Inc, 2606 Second Avenue, 406,
Seattle, WA 98121 USA (August, 2005).
Available at: http://www.blackhat.com/presentations/bh-europe-05/bh-eu-05-farrow.pdf

[185] NVD Download and Product Integration Page. National Vulnerability Database (January
2006).
Available at: http://nvd.nist.gov/download.cfm

[186] X-Force: Alerts and Advisories. Internet Security Systems (January 2006).
Available at: http://xforce.iss.net/xforce/alerts

[187] SecurityFocus: Vulnerabilities. SecurityFocus Vulnerability Database (January 2006).
Available at: http://www.securityfocus.com/vulnerabilities

[188] New Security Information. Microsoft Website (January 24, 2006).
Available at: http://www.microsoft.com/athome/security/rss/default.mspx

[189] Debian Foundation. Security Information. Debian Security Team Website (February 13,
2006).
Available at: http://www.debian.org/security/

[190] FreeBSD VuXML. Website (February 7, 2006).
Available at: http://www.vuxml.org/freebsd/

[191] SGUIL(tm) The Analyst Console for Network Security Monitoring. Website (2006).
Available at: http://sguil.sourceforge.net/

[192] DeepSight(tm) Analyser. Symantec Website (February 13, 2006).
Available at: http://analyzer.securityfocus.com/

[193] Open Vulnerability and Assesment Language OVAL (May 19, 2006).
Available at: http://oval.mitre.org/

[194] Open Vulnerability and Assesment Language OVAL - XML Schema (June 9, 2006).
Available at: http://oval.mitre.org/language/index.html

REFERENCES 153

[195] McDonald, Josh (2005).
Available at: http://xdelta.blogspot.com/

[196] Percival, Colin. Naive differences of executable code (September 2003).
Available at: http://www.daemonology.net/bsdiff/

[197] Microsoft. Binary Delta Compression. Technical report (March, 2004).
Available at: http://www.microsoft.com/downloads/details.aspx?FamilyID=

4789196c-d60a-497c-ae89-101a3754bad6

[198] Brennen, V. Alex. Strong Distribution HOWTO. Online HOWTO (April 1, 2003).
Available at: http://www.cryptnet.net/fdp/crypto/strong_distro.html

[199] Sohn, Tae-Shik; Moon, Jong-Sub; Lee, Cheol-Won; Im, Eul-Gyu and Seo, Jung-Taek.
Safe Patch Distribution Architecture in Intranet Environments. In Security and Manage-

ment, pages 455–460 (2003).

[200] Vulnerabilities in Operating System Patch Distribution. Technical report, BindView, No
Longer Available.
Available at: http://razor.bindview.com/publish/papers/os-patch.html

[201] Cohen, Bram. BitTorrent. Vendor Website (2004).
Available at: http://bitconjurer.org/BitTorrent/

[202] Cohen, Bram. Incentives Build Robustness in Bittorrent. Technical report (may 2003).
Available at: http://bitconjurer.org/BitTorrent/bittorrentecon.pdf

[203] Microsoft Corporation. Microsoft Baseline Security Analyser (MBSA) version 1.2.1 is

available. Microsoft Website (July 7, 2005).
Available at: http://support.microsoft.com/default.aspx?kbid=320454

[204] GFI. GFI Languard: Security scanning and patch management. Vendor Website (June
26, 2006).
Available at: http://www.gfi.com/languard/

[205] Microsoft. Microsoft Systems Management Serve. Vendor Website (June 26, 2006).
Available at: http://www.microsoft.com/smserver/

[206] IBM. Tivoli Software. Vendor Website (June 26, 2006).
Available at: http://www.ibm.com/software/tivoli/

REFERENCES 154

[207] Configuresoft. Configuresoft: Configuration Management & Compliance. Vendor Website
(June 26, 2006).
Available at: http://www.configuresoft.com/

[208] Microsoft Windows Update Service Home (2005).
Available at: http://www.microsoft.com/wsus/

[209] Patchlink. Patchlink Update: #1 Patch Management Software for Securing the Enterprise.
Vendor Website (June 26, 2006).
Available at: http://www.patchlink.com/

[210] BigFix, Inc. BigFix Inc. Vulnerability Management. Vendor Website (June 26, 2006).
Available at: http://www.bigfix.com/

[211] Ecora. SECURITY COMPLIANCE & CONTROL MADE EASY. Vendor Website (June
26, 2006).
Available at: http://www.ecora.com/ecora/

[212] FreeBSD. About FreeBSD Ports. Project Website (June 26, 2006).
Available at: http://www.freebsd.org/ports/

[213] Failures in Detection (Last 7 Days). VirusTotal Website (February 13, 2006).
Available at: http://www.virustotal.com/flash/graficas/grafica4_en.html

[214] White, SR. Open Problems in Computer Virus Research. Technical report (1998).
Available at: http://www.research.ibm.com/antivirus/SciPapers/White/Problems/Problems.html

[215] Software, Marshal. WebMarshal Product Information. Vendor Website (June 26, 2006).
Available at: http://www.marshalsoftware.com/pages/webmarshal.asp

[216] Patton, S; Yurcik, W and Doss, D. An Achilles Heel in Signature-Based IDS: Squealing

False Positives in SNORT. In Proceedings of RAID 2001 (2001).
Available at: http://mel.icious.net/ids/raid01.pdf

[217] Malware Prevention through black-hole DNS. Bleeding Snort Projects (March 3, 2005).
Available at: http://www.bleedingsnort.com/blackhole-dns/

[218] PatchPoint(tm) System. BlueLane Website (February 2006).
Available at: http://www.bluelane.com/

REFERENCES 155

[219] Sachs, Marcus. More .wmf Woes. SANS Internet Storm Centre Handler’s Diary (January
2, 2006).
Available at: http://isc.sans.org/diary.php?storyid=1002

[220] Ptacek, Thomas. Thomas Ptacek’s Second Rule Of Security Marketing. Matasano
Security Weblog (November 21, 2005).
Available at: http://www.sockpuppet.org/tqbf/log/2005/11/thomas-ptaceks-second-rule-of-security.

html

[221] Kojm, Tomasz. ClamAV: Project News. Project Website (June 26, 2006).
Available at: http://www.clamav.net/

[222] Foley, Mary Jo. Microsoft Delays By a Year Delivery of Two New Patching Systems (July
2004).
Available at: http://www.microsoft-watch.com/article2/0,1995,1656785,00.asp

[223] Microsoft Windows Update (2005).
Available at: http://www.windowsupdate.com/

[224] Windows Update Services Deployment White Paper. Technical report, Microsoft (Novem-
ber 2004).
Available at: http://www.microsoft.com/windowsserversystem/wus/deployment.mspx

[225] Zinman, Amit. Windows Update Services Review (November 2004).
Available at: http://www.windowsecurity.com/articles/Windows-Update-Services-Review.html

[226] Microsoft .NET Framework Version 1.1 Redistributable Package (March 2004).
Available at: http://go.microsoft.com/fwlink/?LinkId=9104

[227] Microsoft .NET Framework 1.1 Service Pack 1 for Windows Server 2003 (August 2004).
Available at: http://go.microsoft.com/fwlink/?LinkId=35326

[228] Microsoft Windows Update Services BITS 2.0 beta for Windows 2000 Server (November
2004).
Available at: http://www.microsoft.com/windowsserversystem/wus/betaeulaWin2k.mspx

[229] Microsoft Windows Update Services BITS 2.0 beta for Windows Server 2003 (November
2004).
Available at: http://www.microsoft.com/windowsserversystem/wus/betaeulaWin2003.mspx

REFERENCES 156

[230] Download Internet Explorer 6 Service Pack 1 (September 2002).
Available at: http://go.microsoft.com/fwlink/?LinkId=22355

[231] Microsoft SQL Server 2000 Desktop Engine (MSDE 2000) Release A (December 2004).
Available at: http://go.microsoft.com/fwlink/?LinkId=35713

[232] Automatic Updates June 2002 (June 2002).
Available at: http://go.microsoft.com/fwlink/?LinkId=22338

[233] Software Update Services Deployment White Paper. Technical report, Microsoft.
Available at: http://www.microsoft.com/windowsserversystem/sus/deployment.mspx

[234] Semilof, Margie. Microsoft taking steps to integrate WUS with Windows (March 2004).
Available at: http://searchwin2000.techtarget.com/qna/0,289202,sid1_gci956193,00.html

[235] Thurrott, Paul. What You Need to Know About Windows Update Services (April 2004).
Available at: http://www.windowsitpro.com/Windows/Article/ArticleID/41969/41969.html

[236] Microsoft. Description of the new features in the package installer for Windows software

updates. KB 832475 (March 2005).

[237] Hoover, Ken. Ken’s SUS Scripts (June 2004).
Available at: http://pantheon.yale.edu/~kjh27/sus-scripts.html

[238] White, Dominic. SUS Reporting Tools (December 2004).
Available at: http://singe.rucus.net/sus/

Appendix A

Time-line of Notable Worms and Viruses

A.1 Introduction

While researching this document, much work was put into analysing past virii and worms. This
resulted in the formation of a Wikipedia article which has since been added to. The below is a
time-line of notable worms and viruses. This serves to place the oft-discussed incidents into a
greater context.

A.2 Time-line

A.2.1 2006

• January 20th: The Nyxem worm is discovered. Spread by mass-mailing, its payload, which
activates on the 3rd of every month, starting on February 3, attempts to disable security-
related and file sharing software and destroy files of certain types, such as Microsoft Office.

A.2.2 2005

• August 16th: The Zotob Worm and several variations of malware exploiting the vulner-
ability described in MS05-039 are discovered. The effect is overblown because several
United States media outlets are infected.

157

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 158

A.2.3 2004

• December 2004: Santy, the first known "webworm" is launched. It exploits a vulnerability
in PhpBB described in BID10701, and uses Google in order to find new targets. It infects
around 40000 sites before Google filters the search query used by the worm, preventing it
from spreading.

• May 1st: The Sasser worm emerges by exploiting a vulnerability in LSASS described in
MS04-011. It causes problems in networks, even interrupting business in some cases.

• March 19th: The Witty worm, record-breaking in many regards. It exploits holes in several
Internet Security Systems (ISS) products. It is the fastest disclosure to worm, the first
internet worm to carry a destructive payload, and spread rapidly using a pre-populated list
of ground-zero hosts.

• Late January: MyDoom emerges, and still holds the record for the fastest-spreading mass
mailer worm.

A.2.4 2003

• October 24th: The Sober worm is first seen and maintains its presence until 2005 with
many new variants.

The simultaneous attack of the Blaster and Sobig worms causes a massive amount of damage.

• August 19th: The Sobig worm (technically, the Sobig.F worm) spreads rapidly via mail
and network shares.

• August 18th: The Welchia (Nachi) worm is discovered. The worm tries to remove the
blaster worm and patch Windows.

• August 12th: The Blaster worm, also know as the Lovesan worm, spreads rapidly by
exploiting Microsoft Windows computers vulnerable to exploits first described in MS03-
026 and later in MS03-039.

• January 24th: The SQL slammer worm, also known as the Sapphire worm, attacks vulner-
abilities in Microsoft SQL Server and MSDE described in MS02-039 and MS02-061, and
causes widespread problems on the Internet.

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 159

A.2.5 2001

• October 26th: The Klez worm is first identified.

• September 18th: The Nimda worm is discovered and spreads through a variety of means,
including vulnerabilities described in MS01-044 and backdoors left by the Code Red II
and Sadmind worms.

• August 4th: A complete re-write of the Code Red worm, Code Red II begins aggressively
spreading, primarily in China.

• July 13th: The Code Red worm attacking the Index Server ISAPI Extension in Microsoft’s
Internet Information Services with a vulnerability described in MS01-033, is released.

• July: The Sircam worm is released, spreading through e-mails and unprotected network
shares.

• May 8th: The Sadmind worm spreads by exploiting holes in both Sun Microsystem’s
Solaris (Security Bulletin 00191)and Microsoft’s Internet Information Services (MS00-
078).

• January: A worm strikingly similar to the Morris worm, named the Ramen worm infected
only Red Hat Linux machines running version 6.2 and 7, using three vulnerabilities in
wu-ftpd, rpc-statd and lpd respectively.

• May: The VBS/Loveletter worm, also known as the "I love you" virus, appears. As of
2004, this is the most costly virus to business, causing upwards of 10 billion dollars in
damage.

A.2.6 1999

• March 26th: The Melissa worm is released, targeting Microsoft Word and Outlook-based
systems, and creating considerable network traffic.

A.2.7 1998

• June 2nd: The first version of the CIH virus appears.

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 160

A.2.8 1995

• The "Concept virus," the first Macro virus, is created

A.2.9 1992

• Michelangelo predicted to create a digital armageddon on 6th of March, with millions of
computers having their information wiped, according to a mass media hysteria surrounding
the virus. Later assessments of the damage showed the aftermath to be minimal.

A.2.10 1989

• October 1989: The Ghostball virus is the first multipartite virus and was discovered by
Fridrik Skulason.

A.2.11 1988

• November 2nd: The Morris worm, created by Robert Tappan Morris, infects DEC VAX
and SUN machines running BSD UNIX connected to the Internet, and becomes the first
worm to spread extensively "in the wild", and one of the first well-known programs ex-
ploiting buffer overrun vulnerabilities.

A.2.12 1987

• October: The Jerusalem virus is found in the city of Jerusalem, Israel. It is a destructive
virus programmed to destroy executable files on every occurrence of Friday the 13th.

• November: The SCA virus, a boot sector virus for Amigas appears, immediately creating a
pandemic virus-writer storm. A short time later, SCA releases another, considerably more
destructive virus, the Byte Bandit.

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 161

A.2.13 1982

• A program called Elk Cloner, written for Apple II systems, is credited with being the first
computer virus to appear "in the wild", i.e. outside the single computer or lab where it was
created.

Appendix B

Analysis of WSUS

B.1 Introduction

On November 16th 2004, Microsoft announced the availability of the Windows Update Service
(WUS) Beta. This date came half a year after Microsoft originally planned to release the ser-
vice[222]. Then, four months later (March 22nd 2005), Microsoft announced a new release
candidate (RC) and a name change, WUS was to be called WSUS (Windows Server Update Ser-
vices), and on June 8th 2005, Microsoft released WSUS to manufacturing. Given the growth in
focus and solutions for patch management over the last year, the delays and changes are hardly
surprising. With the window from vulnerability announcement to exploit release rapidly di-
minishing, patching has become one of the essential tools on the front-line of security. Many
organisations have been making do with Microsoft’s Software Update Service (SUS) for the last
year, with many more still looking for a patch management solution. SUS was seen as a quick-fix
due to its limited nature, leaving more than one administrator with handfuls of hair. Microsoft
has provided Systems Management Server (SMS) for enterprise patch management and other
administration. However, the price is not always appropriate - particularly for small to medium
enterprises. It is hoped WSUS can address these issues.

This review will detail the experience with WSUS from installation to use. It will start with
an abridged description of WSUS’s installation and configuration, and move on to a tour of its
abilities. The narrative then takes a turn for the technical, with the basic workings of WSUS
explained, based on information gleaned from a live packet capture. The review is concluded
with a list of useful WSUS resources.

162

APPENDIX B. ANALYSIS OF WSUS 163

B.2 What’s New

WSUS introduces a number of new features, mostly due to the new back-end that Microsoft
has implemented, WSUS uses the same back-end technology as Microsoft’s Windows Update
service[223]. These new features are:

• Reporting Features. SUS provided no reporting at all, although the back-end implemented
it. This lead to administrators having to rely on third-party tools to derive what was going
on in their organisation. WSUS provides a host of reporting features, partially fulfilling
this much needed customer request.

• More Updates. In addition to operating system updates, WSUS now provides updates for
Office XP and 2003, Exchange and SQL server. It still only provides support for Microsoft
products and patches however.

• Update Filters. The administrative interface provides useful filter options to navigate the
thousands of updates.

• Target Grouping. Machines can now be placed into different groups, allowing different
update approval options for each group. This is particularly useful for pushing patches to
a test lab before large scale deployment.

• Improved Distribution. WSUS now allows express updates which use binary patching to
push only those changes required (called deltas), rather than a whole file. It also supports
an improved topology making distributing updates across the organisation easier. Finally,
the download on demand feature can ensure that updates are only downloaded when nec-
essary.

• Patch Options. WSUS now allows several new update approval options, which enable it to
optionally check if an update is required, install the updaten or remove the update. WSUS
also provides for automatic approval rules for specific updates and target groups.

• Improved Update Options. The new version of the BITS (Background Intelligent Trans-
fer Service) includes new options which make installing updates on client machines less
intrusive and disruptive.

• New Back-end. WSUS now sports a new back-end finished off with a SQL database. With
the option of either SQL server or the free Microsoft Desktop Engine (MSDE).

APPENDIX B. ANALYSIS OF WSUS 164

• Secure Server Replication. Updates and configurations can be replicated between servers.
In addition SSL connections can be used in server to server and server to client connections.

B.3 Installation

Installing WSUS is fairly straightforward. Microsoft have provided a good description of the
process and its options in their WSUS deploy guide[224], along with a brief guide by Win-
dowsSecurity.com[225]. Thus, this section will be fairly brief.

B.3.1 Topology

Before an installation, an administrator should be aware of the topologies WSUS affords. With
the new grouping options and the ability to distribute WSUS servers, several different topologies
are possible. There are four basic models which can then be combined to form fairly complex
systems if necessary. There are three primary components used: Microsoft Update (MU), the
WSUS server, and the WSUS clients, called Automatic Update(AU) clients.

B.3.1.1 Default

This is the ’normal’ way of doing things, with the WSUS server receiving its updates and meta-
data from Microsoft Update (in a process called synchronisation) and passing it on to its AU
clients. The meta-data contains extended information about the update, such as the licensing and
description, and can be separated from the actual update. See figure B.1.

B.3.1.2 Grouping

WSUS’s new grouping feature allows AU clients to be grouped separately. Each group can then
have its own patch approval options. This is useful for testing, allowing patches to be pushed to a
test lab before being pushed to the AU clients in a production group. Grouping does not allow for
a machine to be part of (often requested) multiple groups. However, this is not a disadvantage, as
requiring this is usually indicative of a poor topology, with the additional complexities required
to implement it being prohibitive. See figure B.2.

APPENDIX B. ANALYSIS OF WSUS 165

Figure B.1: Default Topology

Figure B.2: Grouped Topology

APPENDIX B. ANALYSIS OF WSUS 166

Figure B.3: Chained Topology

B.3.1.3 Chaining

As with SUS, WSUS allows for a WSUS server to synchronise from another WSUS server
rather than Microsoft Update. This is useful for creating a distributed hierarchical environment.
Microsoft recommends that the hierarchy be no more than three levels deep, though they have
tested it with up to five levels[224]. With this model a downstream WSUS server will inherit the
approval and transfer setting of the upstream WSUS server. Such a topology can also be used as
a disconnected architecture where WSUS’s import/export update feature allows for updates to be
hand-carried via sneaker net1 from a connected WSUS server to a disconnected one.See figure
B.3.

B.3.1.4 Client Download

It is not always practical to download updates to the WSUS server for distribution. This is
particularly true in mobile environments where the AU client’s proximity to the WSUS server is
unknown. In such situations, the WSUS server can be configured to store only update meta-data.

1Manually delivering patches to each machine without a network.

APPENDIX B. ANALYSIS OF WSUS 167

Figure B.4: Client Download Topology

This allows the WSUS server to retain control over update approval without needing to store or
distribute the updates themselves. The AU clients can then download the approved updates from
Microsoft Update. See figure B.4.

B.3.2 Requirements

WSUS requirements are fairly minimal, and typical of the average server. The requirements are
described in more detail in the WSUS Deployment Guide[224].

Microsoft recommends a 1GHz machine for <500 AU clients and a 2GHz machine for >500
AU clients. It should also have at least 1GB of RAM. WSUS requires either Windows Server
2003 or Windows 2000 Server with both requiring the .NET framework ver 1.1 SP1[226, 227],
BITS 2.0[228, 229] and IIS 6.0 and Windows 2000 Server requiring IE 6.0 SP 1[230]. Both
should have 30GB of an NTFS file system free for updates and 2GB free for MSDE. Microsoft
recommends using SQL Server over MSDE with >500 AU clients. MSDE for Windows Server
2003 (now named Windows SQL Server 2000 Desktop Engine or WMSDE) is distributed with
the WSUS installer however Windows 2000 Server users will have to download it[231].

The automatic updates client has the same requirements as SUS and will only work on Windows
2000 with Service Pack 3 or later, Windows XP and Windows 2003. WSUS then uses SUS
to update the client to work with WSUS. However, this won’t work on Windows XP machines
without service packs installed, as it requires the SUS upgrade[232].

APPENDIX B. ANALYSIS OF WSUS 168

Figure B.5: WSUS Administrative Interface

B.3.3 Server

Server installation is facilitated by a wizard, which presents the user with three decisions: whether
to store updates locally or have clients fetch them from Microsoft Update, whether to install
MSDE or use an existing SQL database, and whether to use the default web site or create a new
WSUS site. ASP .NET 1.1 will be installed at the same time. The wizard will also allow for an
upstream WSUS server to be configured, instead of connecting to Microsoft Update.

After a successful installation the WSUS administrative interface (see figure B.5) can be found
at http://server[:port]/WSUSAdmin/, where [port] will only be used if WSUS was
not installed to the default site, in which case the port will be 8530.

B.3.4 Client

WSUS uses the automatic update (AU) client’s self-update feature to install the new AU client on
each machine. The client is first upgraded from the cab files found in \Selfupdate directory of the

APPENDIX B. ANALYSIS OF WSUS 169

Figure B.6: WSUS Configuration

web server. Once upgraded, it installs the new Windows Installer 3.1, BITS 2.0 and WinHTTP
5.1 which are needed to support the new configuration options WSUS affords. Windows XP SP2
already has an updated automatic updates client, but will still self update to the latest version. A
more technical description of this process can be found later in this document.

B.4 Configuration

WSUS configuration is similar to SUS configuration. The behaviour of the WSUS server is con-
trolled through the WSUS administrative interface (see figure B.5) while the behaviour of the AU
clients is handled through group policy or the registry. This section provides a brief introduction
to the various configuration settings available. Once again this is documented in greater detail
in the WSUS deploy guide[224], with additional information available in the (currently) more
complete SUS deploy guide[233].

B.4.1 Server

Server configuration is done via the WSUS administration page (http://server[:port]/WSUSAdmin/)
(see figure B.6). Some options are shared with SUS and will not be covered in detail.

The WSUS server can be configured to synchronise with either Microsoft Update or another
WSUS server, as discussed above. This requires information such as the server and proxy details

APPENDIX B. ANALYSIS OF WSUS 170

Figure B.7: Automatic Approval

and a schedule for how often the WSUS server should synchronise. The syntax for entering
an upstream server is http://servername[:port], with [:port] only used if the WSUS server is not
using port 80.

WSUS now supports updates for Office, Exchange and SQL Server, as compared to SUS which
had far fewer updates. Microsoft hopes to expand this to all of their products, and are looking
into methods for securely distributing third-party updates while maintaining the distribution se-
curity of signed updates[234]. This requires that the products, for which WSUS should distribute
updates, be selected by adjusting the settings for which products, languages, and class of update
e.g. critical updates, security updates, service packs should be managed (see figure B.8). Given
the much increased number of updates, there is an option to automatically approve certain classes
of updates(see figure B.7).

WSUS provides two methods for grouping computers. The first is server side targeting. This

APPENDIX B. ANALYSIS OF WSUS 171

Figure B.8: Product Update Selection

APPENDIX B. ANALYSIS OF WSUS 172

Figure B.9: Client-Side Computer Grouping

allows an administrator to manually place machines that have contacted the WSUS server into
chosen groups. The second, more powerful, option allows the clients themselves to advertise
to be put in a certain group (see figure B.9). This setting is then controlled on the client either
through group policy or registry settings. In both cases an administrator needs to create the group
on the server.

The new distribution options afforded by WSUS allow for bandwidth consideration to be better
accounted for. Deferred updates allow meta-data to be downloaded separately from the update
files. This allows approvals to be disseminated, and the update is only downloaded if required by
an AU client connected to the WSUS sever (or a downstream WSUS server). Express installation
is Microsoft catching up to FreeBSD with binary patching. It allows for deltas to be sent to the
AU clients. These deltas only contain information that should be changed within selected files
rather than a replacement for the entire file. Express installation does incur a cost, in the form of
a large initial download from to the WSUS server, as a delta for each possible version of the files

APPENDIX B. ANALYSIS OF WSUS 173

needs to be distributed.

B.4.2 Client Side

The new background intelligent transfer service (BITS v2.0) and automatic update client allow
for several new configuration options on the client side (see figure B.10). The addition of these
options appears to be Microsoft’s response to criticism of the less flexible options provided in
previous versions. In particular, the fewer restarts and greater configurability should make the
process more pleasant for the desktop user. These options can be modified in several ways; active
directory group policy, local group policy, or registry settings. These configuration methods are
referred to as administrative policies, which are distinct from the user’s configuration. A few of
the options are common to SUS, therefore the focus will be on the changes and new options.
Modifying these via group policy can be done by opening the group policy editor and navigating
to Computer Configuration/Administrative Templates/Windows Components/Windows Update,
after loading the windows update administrative template, wuau.adm (this will automatically be
upgraded if done previously with SUS). Modifying the settings via the registry requires that the
key HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\WindowsUpdate[\AU] be
edited.

There are new options related to how update notifications are displayed. These notifications can
occur either before downloading and installation, just before installation, or not at all. The first
option prevents the automatic update client’s user-interface from being locked when administra-
tive policies are used to configure the client. This allows a local administrator to choose their
own notification settings. The next allows for non-administrators to be included in the group of
users allowed to receive update notifications.

With the introduction of grouping, client-side targeting is a method whereby an AU client will
advertise which group it should be a member of, allowing clients to self-populate groups. There
is thus an option to specify which group the AU client should request membership of.

WSUS now takes better advantage of the agent on the AU clients, and utilises a periodic check
where an AU client will connect and allow the WSUS server to interrogate its patch status. This
option is specified in hours. The AU client will connect between the specified time and a 20%
offset. Thus if the option is 10 hours the AU client will connect every 8 to 10 hours.

APPENDIX B. ANALYSIS OF WSUS 174

Figure B.10: New BITS Options

APPENDIX B. ANALYSIS OF WSUS 175

Figure B.11: Remove Access to Windows Update

A separation has been made between updates that require a restart and those that don’t. Non-
restarting updates can be installed immediately without notifying the relevant user, if the user
is configured to receive installation notifications. This allows the administrator to automatically
install updates that don’t require a restart without disturbing the desktop user, unless an update
requires a restart. This should reduce disruptions to the end user.

In the case of scheduled installations, two new options have been provided. One allows a delay
to be inserted before continuing with a scheduled restart, and the other allows the amount of
time before the user is re-prompted for a scheduled restart to be specified. Though minor, these
changes are occasionally useful.

The option to remove links and access to Windows Update was available in SUS (see figure
B.11), but is often overlooked and is therefore mentioned here. This will remove the link to
Windows Update in the start menu and will prevent non-approved updates being installed from
Windows Update. This setting can be found in the group policy editor at Computer Configura-

tion/Administrative Templates/Start Menu and Taskbar.

In addition to administrative policies, the update client can be manipulated via the command
line. This is done by running wuauclt.exe with command line switches. The two switches are:

APPENDIX B. ANALYSIS OF WSUS 176

/resetauthorization which will delete the client side cookie, which normally expires after an
hour, and contains information such as the target group (more information on this can be found
in section B.7); and /detectnow which will force the AU client to connect to the WSUS server
and check for new approvals. When these switches are used together they must be used in the
order they were mentioned i.e. wuauclt.exe /resetauthorization /detectnow. This is particularly
useful for debugging machines and forcing an update.

B.5 Patching

The process of patching machines is done in six steps: synchronisation, approval, detection, dis-
tribution, installation, verification. This section will look at each step, and how WSUS supports
it.

B.5.1 Synchronisation

During synchronisation meta-data is downloaded from a central distribution point, in this case
Microsoft Update, and disseminated to other WSUS servers and AU clients. This process can
also download the updates to the server, allowing AU clients to fetch them locally, if WSUS has
been configured to do so. WSUS uses BITS to transfer the meta-data and updates in the back-
ground, and supports resuming the process if it is interrupted. The progress of a synchronisation
is displayed on the front page of the WSUS administrative interface (see figure B.5).

B.5.2 Approval

WSUS allows three types of approval to be applied to each update: detect only, install, and
remove (see figure B.12). No updates currently support the remove option, but will in the future,
as it is a function of the new Windows Installer. The update’s approvals can apply to all machines
or one group. A group can also inherit its approvals from the global configuration. The interface
is far easier to use, allowing updates to be filtered by product, classification, approval, date
received, and by a text-based search. The filtered updates can then be sorted by column.

APPENDIX B. ANALYSIS OF WSUS 177

Figure B.12: Update Approval

APPENDIX B. ANALYSIS OF WSUS 178

Figure B.13: Patch Status Detection

B.5.3 Detection

Periodically an AU client will connect to the server and provide a list of platform details, installed
updates, hardware, and drivers. This is then used by the WSUS server to display which updates
are needed by the AU client and which have been successfully installed (see figure B.13). This is
particularly useful for determining the patch status of an organisation. The frequency with which
an AU client connects to the WSUS server is configured on the client (see B.4.2). This is also
where the AU client synchronises with its WSUS server.

B.5.4 Distribution

Updates are distributed over HTTP using the background intelligent transfer service (BITS),
which supports resuming of interrupted downloads and dynamic throttling of downloads to use

APPENDIX B. ANALYSIS OF WSUS 179

spare bandwidth. Updates can either be downloaded from a local WSUS server or Microsoft
Update depending on the topology (see section B.3.1). Distribution has been made more flexible
with the introduction of download on demand, wherein updates are only downloaded to the server
when needed, and express updates, which make use of binary patching (see section B.4.1).

B.5.5 Installation

Many of the patching improvements in WSUS are due to the new Windows Installer ver 3.
Microsoft has converged their many patching methods into two which are supported by the new
installer[235]. The new MSI packages will also support uninstallation of updates[235], hence
the new ’remove approval’ setting. In addition, these packages will require fewer restarts and
will support binary patching[235], hence the introduction of express updates. Other powerful
switches have been added, and more detail can be found from Microsoft[236].

B.5.6 Verification

An important part of any patch management solution is the ability to verify that the patch was
actually installed. In WSUS this is achieved through the same interface used for detection (see
figure B.13). The AU clients check in after installing updates and after a machine restart in which
updates are installed.

B.6 Reporting

The single largest problem with SUS was its complete lack of reporting. WSUS offers four
reports officially labelled as such (see figure B.14). The two most useful are a breakdown of
updates or computers, which allows an administrator to drill down to see statistics for groups
and individual AU clients or updates(see figures B.15 and B.16). These reports can be filtered
by approval and groups, and can then be sorted by each column. This is not the only reporting
in, WSUS as many other screens provide reporting features, such as the computer and update
screens (see figures B.13 and B.12). On the back-end, all of the information is stored in a SQL
database, allowing ad-hoc queries to be address through third-party tools (such as Microsoft

APPENDIX B. ANALYSIS OF WSUS 180

Figure B.14: WSUS reports

Systems Management Console). This is a great improvement over SUS, but many administrators
will probably require more.

B.7 Packet Capture

To get a better look at how WSUS does its work, Ethereal was used to perform a packet cap-
ture of the communications between an AU client and the WSUS server. This revealed several
improvements over SUS. Further, it demonstrated the working of WSUS which have not been
published in much detail as yet. The testing here was performed on a variety of WUS and WSUS
pre-releases, and thus some of the bugs may have been resolved.

B.7.1 Steps Performed

The relevant tasks performed during the packet capture were:

1. A new Windows XP SP1a AU client is joined to the active directory domain.

2. AU client self-updated.

3. The new AU client installs Windows Installer and BITS updates, required a restart.

APPENDIX B. ANALYSIS OF WSUS 181

Figure B.15: Report by Computer

4. Logged in with some automatic update activity. The logged in administrator was not in-
formed, although the icon appeared briefly. A restart was required.

5. Logged in and 24 new updates were downloaded.

6. Updates were installed, restart was required.

7. WSUS server synchronised with Microsoft Update.

8. wuauclt.exe /detectnow was run from command line on the AU client.

9. One critical update detected, downloaded and installed.

10. The same critical update was detected, downloaded, and installed multiple times until ap-
proval was revoked on WSUS server.

B.7.2 Resulting Network Traffic

By comparing the resulting packet capture to the steps performed above, the interactions between
the WSUS server and the AU client were discovered. Below is a chronological list of recorded
HTTP request traffic between the WSUS server and AU client, and its analysis.

APPENDIX B. ANALYSIS OF WSUS 182

Figure B.16: Report by Update

APPENDIX B. ANALYSIS OF WSUS 183

• /iuident.cab - This stands for ’Industry Update Identification’ and is how the client’s ver-
sion is identified. This .cab file along with the rest below was timestamped by Verisign and
signed by Microsoft. If this were the first communication of a machine with a WSUS AU
client rather than a SUS AU client (e.g. Windows XP with SP2) then these first three steps
would not be seen and the traffic would start with a call to wuident.cab.

• Once it is determined that this is a SUS client, the self-update from point 2 of the above
section (B.7.1) is performed. The client is instructed to download the relevant .cab files
(starting with wacomp.cab, which contain version information for the individual client
files) of the new automatic update client. In this client configuration the files were stored
in /selfupdate/au/x86/XP/en/ on the IIS server.

• /wutrack.bin - After the self-update, the client requests wutrack with a parameterised query
string. With SUS, the request of wutrack.bin was used for reporting and statistics on the
patch process. The parameters provide information on aspects of the clients behaviour,
including platform, activity, and the KB of the patch being installed (more information
can be found on page 83 of the SUS deploy guide[233]). This method is how third-party
SUS reporting tools were developed (e.g. K. Hoover’s[237] or my D. White’s [238]). With
WSUS the item and activity parameters are not used, but platform information is provided.
This was the only request to wutrack.bin seen in the whole capture, and appears to be left
for backwards compatibility.

• /wuident.cab - This stands for Windows Update Identification, and contains AU client
version information. This request includes a date stamp as a parameter.

• /wusetup.cab - This contains an .inf and .cat file which contain setup information, such as
dll version and registration information, for the new automatic update client. This request
also includes a date stamp as a parameter.

• From here the new automatic update client communicated with the WSUS sever using
a SOAP based web service. The format used to describe the method calls is: [returned

information] MethodName (passed information)

– [config] GetConfig

– [auth cookie] GetAuthCookie

– [cookie] GetCookie (encrypted(auth cookie))
After this the returned cookie is encrypted and sent as the preamble to all future

APPENDIX B. ANALYSIS OF WSUS 184

transactions. This cookie will contain information such as the target group of the AU
client, and expires after an hour.

– RegisterComputer (a SOAP XML file is passed with the full platform information)

– [required update ID’s] SyncUpdates (system information, such as platform informa-
tion, installed updates and installed drivers) ...

This is how the WSUS server knows what updates are needed on the client. This
method is called several times. The first time it is called the client sends empty
update ID parameters. The last time it is called it contains strings of hardware drivers
installed on the client.

– [metadata] GetExtendedUpdateInfo (update meta-data)

This includes information such as the EULA and description of each update.

– [confirmation] ReportEventBatch (meta-data and sync updates status)

Information about the status of the client registration is returned. The client passes a
large XML file to the server here, detailing the status of the updates and once again
providing platform information.

– The first batch of updates is then downloaded as per point 3 above. In this case it is
the Windows Installer 3.1 and BITS 2.0 updates. Once installed these will allow the
full WSUS functionality to be used. Files are downloaded from sub-directories of the
/Content/ virtual directory in chunks, presumably to allow resuming of downloads if
the process is interrupted.

– [confirmation] ReportEventBatch (update download status)

Information about the status of the download of the patches. This is sent before the
update is installed, but after it is downloaded. According to the WSUS deploy guide,
the AU client should request meta-data from the WSUS server again after download-
ing but before installation[224]. This is to ensure that approvals revoked during the
download are not ignored. While there were no separate requests representing this, it
is presumed that it would occur here.

– [confirmation] ReportEventBatch (update installation status)

Before the client restarts and after the updates have been installed, another report is
made. A separate report is made for each installed update.

• After a restart, the behaviour seen in point 4 (of the previous section B.7.1) is seen. No
notification was received by the logged-on administrator, which conflicted with how group

APPENDIX B. ANALYSIS OF WSUS 185

policy had been configured. It was assumed that updates for immediate install were being
installed, as that option had been activated (see section B.4.2). However a restart was
required, which should not happen if this activity was as a result of immediate updates, as
they do not require a restart. This resulted in the following use of the web service:

– [confirmation] ReportEventBatch (update installation status)

This is a report on the, now complete, installation of the updates installed before the
reboot.

– [location on the web server of updates] GetFileLocations (update ID’s and file di-
gests)

– The updates are then downloaded. Once again the AU client should check that none
of the approvals for the downloaded updates have been revoked during the download.
It is presumed that this check would be part of the GetFileLocations method.

• The machine is then restarted and 24 updates are available as per point 5, after which these
calls are made:

– [confirmation] ReportEventBatch (update installation progress) ...

This is presumed to be reporting on the status of the installation of updates from the
previous point.

– [update location] GetFileLocations (update ID’s and file digests)

– The updates are then downloaded and installed.

– [confirmation] ReportEventBatch (update installation progress)

• The machine is then restarted and another call to ReportEventBatch is made before point
8 is run. Running wuauclt /detectnow resulted in:

– /wuident.cab
/wusetup.cab

These request are made with a date stamp as a parameter.

– [required update ID’s] SyncUpdates (system information, such as platform informa-
tion, installed updates and installed drivers) ...

– [metadata] GetExtendedUpdateInfo (update meta-data)

– One update is then downloaded and installed.

APPENDIX B. ANALYSIS OF WSUS 186

– [confirmation] ReportEventBatch (update installation progress)

These are the items of interest. The full packet capture is available from the following URL:http://singe.za.net/masters/files/WSUS-
packetcapture.tar.gz http://singe.za.net/masters/files/WSUS-packetcapture.
tar.gz (warning: this is a 60MB file) for further analysis.

B.7.3 Analysis

From the information above, a pattern of behaviour can be mapped.

When the AU client first contacts the WSUS server it makes two requests, each with a date stamp
as a parameter. The files are returned timestamped and signed.

1. wuident.cab

2. wusetup.cab

After this, all future interactions (apart from BITS downloading the updates) are done via a web
service.

After which, if the AU client does not have a cookie, or its cookie has expired, the following
handshake is made with the WSUS server:

1. GetConfig

2. GetAuthCookie

3. GetCookie

4. RegisterComputer

If the AU client still has a valid cookie, the above does not occur. The cookie is then pre-pended
to all future transactions.

If the WSUS server has synchronised with an upstream server since the AU client’s last synchro-
nisation, a new synchronisation is performed. This looks like:

APPENDIX B. ANALYSIS OF WSUS 187

1. SyncUpdates

2. GetExtendedUpdateInfo

3. ReportEventBatch

4. Updates are downloaded.

If the AU client does not need to synchronise but has pending updates, a call is made to:

1. GetFileLocations

2. Updates are downloaded.

A reporting call is made after every action, and would be made after an update sync, update
download and update installation. After the updates are downloaded the call is made:

1. ReportEventBatch

After the installation of the updates another report is made:

1. ReportEventBatch

If a restart is required to install any of the updates, another call is made after the machine has
rebooted and, presumably, installed the updates.

1. ReportEventBatch

B.7.4 Packet Capture Summary

B.7.4.1 Interface

On the whole, WSUS seems to be better designed. It utilises an open SOAP based web service,
keeps track of each interaction, and provides far more information on the patching process. SUS
on the other hand, required third-party log analysers to interpret an obscure query string. The
use of a standard web service should make it easier for third-party extensions to be created. The
large amount of information generated should allow for many different reporting options beyond
what WSUS currently offers.

APPENDIX B. ANALYSIS OF WSUS 188

B.7.4.2 Security

There are two security worries here - the first is disclosure of sensitive information, and the sec-
ond is interference with the patch process. The downside of the extra information mentioned
above is that a lot of information about client machines is being sent as clear-text. This informa-
tion includes a list of hardware, installed drivers, and some software being used. There is enough
information to allow an attacker to build a replica system to test attacks on. This is a worry, but it
can be mitigated by good network design. The second worry is less troublesome, as a man in the
middle attack (which the cookie exchange may be vulnerable to) would not be able to circumvent
the security of the signed patches.

B.8 Resources

There are several fairly useful resources for WSUS available. Several were quite valuable while
writing this document.

1. Microsoft’s WSUS page http://www.microsoft.com/wsus/

2. The WSUS Wiki http://wsus.editme.com/

3. SUS Server http://www.susserver.com/

4. Patch Management Mailing List http://www.patchhmanagement.org/

B.9 Conclusion

WSUS is definitely a large step in the right direction. It has many great improvements over
SUS, which seem to indicate that Microsoft is listening to the consumer and responding to their
communities security needs. The interface is easy to use and provides some great functionality.
The extra features provided on the client-side are equally welcome. Microsoft has developed a
good architecture from which their patching strategy can be better managed and built upon. The
most notable problem is that WSUS still only supports a limited range of Microsoft’s products
and is sorely lacking support for third-party updates. Some of these problems are resolved in
Microsoft’s Systems Management Server (SMS).

